Let Complexity Bring Clarity: A Multidimensional Assessment of Cognitive Load Using Physiological Measures
Journal article, 2022

The effects of cognitive load on driver behavior and traffic safety are unclear and in need of further investigation. Reliable measures of cognitive load for use in research and, subsequently, in the development and implementation of driver monitoring systems are therefore sought. Physiological measures are of interest since they can provide continuous recordings of driver state. Currently, however, a few issues related to their use in this context are not usually taken into consideration, despite being well-known. First, cognitive load is a multidimensional construct consisting of many mental responses (cognitive load components) to added task demand. Yet, researchers treat it as unidimensional. Second, cognitive load does not occur in isolation; rather, it is part of a complex response to task demands in a specific operational setting. Third, physiological measures typically correlate with more than one mental state, limiting the inferences that can be made from them individually. We suggest that acknowledging these issues and studying multiple mental responses using multiple physiological measures and independent variables will lead to greatly improved measurability of cognitive load. To demonstrate the potential of this approach, we used data from a driving simulator study in which a number of physiological measures (heart rate, heart rate variability, breathing rate, skin conductance, pupil diameter, eye blink rate, eye blink duration, EEG alpha power, and EEG theta power) were analyzed. Participants performed a cognitively loading n-back task at two levels of difficulty while driving through three different traffic scenarios, each repeated four times. Cognitive load components and other coinciding mental responses were assessed by considering response patterns of multiple physiological measures in relation to multiple independent variables. With this approach, the construct validity of cognitive load is improved, which is important for interpreting results accurately. Also, the use of multiple measures and independent variables makes the measurements (when analyzed jointly) more diagnostic—that is, better able to distinguish between different cognitive load components. This in turn improves the overall external validity. With more detailed, diagnostic, and valid measures of cognitive load, the effects of cognitive load on traffic safety can be better understood, and hence possibly mitigated.

cognitive load

measurability

construct validity

physiological measures

driver distraction

psychophysiology

Author

Emma Nilsson

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Jonas Bärgman

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Mikael Ljung Aust

Volvo Cars

Gerald Matthews

George Mason University

Bo Svanberg

Volvo Cars

Frontiers in Neuroergonomics

26736195 (eISSN)

Vol. 3 787295

Areas of Advance

Transport

Subject Categories (SSIF 2011)

Other Engineering and Technologies

Applied Psychology

DOI

10.3389/fnrgo.2022.787295

More information

Latest update

6/18/2024