A Fundamental Correlative Spectroscopic Study on Li1-xNiO2 and NaNiO2
Journal article, 2024

The intricate relationship between local atomic arrangements and electronic states significantly influences the electrochemical properties of Li-ion battery cathode materials. Despite decades of investigation, a consensus regarding the local atomic and electronic structure of LiNiO2 remains elusive. This ambiguity stems from the potential distortion of Ni sites, either via Jahn-Teller (JT) distortion or bond disproportionation (BD), complicating the understanding of the charge compensation mechanism involving Ni and O. This study compares the structures of LiNiO2 and NaNiO2, a JT system, using an innovative approach that integrates bulk spectroscopy techniques on standardized interoperable samples for enhanced reliability. While X-r and theoretical calculations fail to differentiate between the proposed scenarios, Raman spectroscopy highlights local structural distinctions between monoclinic NaNiO2 and rhombohedral LiNiO2. HAXPES confirms various formal oxidation states for Ni, supported by RIXS data indicating 3d8 states, emphasizing negative charge transfer from Ni and some bond disproportionation in LiNiO2. Regarding charge compensation, XRS and RIXS suggest oxygen hole involvement in redox activity, whereas Raman spectroscopy does not detect molecular oxygen. This comprehensive spectroscopic analysis highlights the importance of correlative characterization workflows in elucidating complex structural-electrochemical relationships.

batteries

correlative spectroscopy

electronic structure

local atomic structure

operando characterization

Author

Quentin Jacquet

Grenoble Alpes University

Nataliia Mozhzhukhina

Chalmers, Physics, Materials Physics

Peter N.O. Gillespie

Consiglo Nazionale Delle Richerche

Gilles Wittmann

SOLEIL Synchrotron

Lucia Perez Ramirez

SOLEIL Synchrotron

Federico G. Capone

Centre national de la recherche scientifique (CNRS)

Physicochimie des Electrolytes et Nanosystèmes Interfaciaux

Jean Pascal Rueff

SOLEIL Synchrotron

Pierre and Marie Curie University (UPMC)

Stephanie Belin

SOLEIL Synchrotron

R. Dedryvere

Centre national de la recherche scientifique (CNRS)

Universite de Pau et des Pays de L'Adour

L. Stievano

Institut Charles Gerhardt Montpellier

Centre national de la recherche scientifique (CNRS)

Aleksandar Matic

Chalmers, Physics, Materials Physics

E. Suard

Institut Laue-Langevin

Nicholas B. Brookes

European Synchrotron Radiation Facility (ESRF)

Alessandro Longo

Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R.

European Synchrotron Radiation Facility (ESRF)

Deborah Prezzi

Consiglo Nazionale Delle Richerche

Sandrine Lyonnard

Grenoble Alpes University

A. Iadecola

Centre national de la recherche scientifique (CNRS)

Physicochimie des Electrolytes et Nanosystèmes Interfaciaux

Advanced Energy Materials

1614-6832 (ISSN) 1614-6840 (eISSN)

Vol. In Press

Subject Categories

Materials Chemistry

Areas of Advance

Materials Science

DOI

10.1002/aenm.202401413

More information

Latest update

7/30/2024