Near Atomic Scale Analysis of Biomaterials and Proteins
Doctoral thesis, 2024

Modern analytical techniques have greatly advanced our understanding of the smallest building blocks of materials and biological systems. In materials science, the structure and composition at the nanoscale directly influence a material's properties, while in biology, the three-dimensional structure of proteins is intimately tied to their function. Biomaterials, designed to interact with biological systems, have significantly contributed to healthcare and improved quality of life by aiding in the treatment of diseases and alleviating injuries. The 3D structure of proteins is key to their function, and to determine this structure is essential for developing therapeutics that address current healthcare challenges.

The structure of biomaterials, as well as proteins at the atomic scale, is crucial to their functionality, necessitating analysis at this size level. This thesis explores the use of Atom Probe Tomography (APT) for various biomaterials used in medical devices as well as protein structures. APT is a powerful characterization technique employed in various domains of materials science, providing near-atomic-resolution analysis of the chemical composition of materials in 3D with high sensitivity.

Biomaterials are often used in medical devices for therapeutic purposes. Despite their success, challenges remain, including difficulties in integrating with the body, hard-to-treat bacterial infections, and mechanical failures. Different design strategies for implantable biomaterials were studied to improve integration with bone, antibacterial properties, and mechanical performance. These materials are analysed using correlative electron microscopy and APT to investigate their microstructures and how these affect the desired material properties.

To study proteins using APT, they must be embedded in a matrix that can withstand the conditions required for analysis while retaining the molecules in their native state. Silica synthesized via a sol-gel process is one such material and is studied in this work. Proteins embedded in silica, either directly in solution or after adsorption to a nanostructured surface, allow for specimen preparation for nanoscale analysis from the obtained material. By utilizing new atom probe instrumentation, where atoms are field evaporated by a deep-UV laser, isotope-labelled proteins are unambiguously detected and studied in quantities previously unattained by APT.

Implanted devices

Silica embedding

Biomaterials

Laser Assisted Atom Probe Tomography

Electron microscopy

Nanomaterials

Proteins

Structural Biology

10:an, Kemihuset
Opponent: Daniel Perea, Pacific Northwest National Laboratory, USA

Author

Gustav Eriksson

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Photothermal Properties of Solid-Supported Gold Nanorods

Nano Letters,;Vol. 24(2024)p. 12529-12535

Journal article

Rau, J., Eriksson, G., Malmberg, P., Reyna, A., Schwiesau, J., Andersson, M., Thuvander, M. Oxidation of a Zirconium Nitride Multilayer Covered Knee Implant after Two Years in Clinical Use

Silica-embedded Gold Nanoparticles Analyzed by Atom Probe Tomography

Microscopy and Microanalysis,;Vol. In Press(2024)

Journal article

Eriksson, G., Hulander, M., Thuvander, M., Andersson, M. Silica Analysis using Deep-UV Laser Assisted Atom Probe Tomography

De Tullio, M., Novi Inverardi, G., Karam, M., Houard, J., Ropitaux, M., Blum, I., Carnovale, F., Lattanzi, G., Taioli, S., Eriksson, G., Hulander, M., Andersson, M., Vella, A., Morresi, T. Evaporation of cations from non-conductive nano-samples using single cycle THz pulses: an experimental and theoretical study

Eriksson, G., Mayweg, D., Hulander, M., Thuvander, M., Andersson, M. Enhanced Throughput and Near Atomically Resolved 3D Protein Structures Analysis using Atom Probe Tomography

Olika typer av material och produkter har i alla tider används för att försöka hantera hälsoproblem och skador. Exempelvis har benbrott åtgärdats, tänder ersatts och sår sytts ihop med olika material. Samtidigt har sjukdomar behandlats med mängder av olika produkter baserat på beprövad erfarenhet.

Genom historien har materialvetenskapen bidragit till utvecklingen av nya produkter så som implantat som kan opereras in i patienter och ersätta skadade delar i kroppen. I dag används implantat regelbundet inom sjukvården och har hjälpt många människor. Dock kvarstår utmaningar såsom risken för infektioner och misslyckas integration med kroppen.

Genom att studera livets byggstenar, framför allt proteiner, kan vi förstå hur sjukdomar uppstår och hur läkemedel kan utformas för att bota dem. Flera metoder har utvecklats under årens lopp för att studera proteiners struktur. De har varit avgörande för att förstå sjukdomsförlopp och utveckla läkemedel som interagerar med proteiner. Men dagens metoder kan inte undersöka alla viktiga proteiner och flera relevanta frågor återstår för att kunna bota fler sjukdomar.

I den här avhandlingen används avancerade analysmetoder från materialvetenskapen för att studera nya alternativa material för olika sorters implantat samt nya metoder för att studera proteiners struktur. Resultaten kan användas för att designa nya implantat som fungerar bättre och att snabbare kunna utveckla nya läkemedel genom att de tillhandahåller mer information om de proteiner som läkemedlen ska påverka.

Membrane Protein Structure Determination using Atom Probe Tomography

Swedish Research Council (VR) (2020-03568), 2020-12-01 -- 2024-11-30.

4D Microscopy of biological materials by short pulse terahertz sources (MIMOSA)

European Commission (EC) (101046651-MIMOSA), 2022-09-01 -- 2026-08-31.

Subject Categories (SSIF 2011)

Materials Chemistry

Infrastructure

Chalmers Materials Analysis Laboratory

Areas of Advance

Materials Science

ISBN

978-91-8103-125-6

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5583

Publisher

Chalmers

10:an, Kemihuset

Opponent: Daniel Perea, Pacific Northwest National Laboratory, USA

More information

Latest update

10/25/2024