Near Atomic Scale Analysis of Biomaterials and Proteins
Doctoral thesis, 2024
The structure of biomaterials, as well as proteins at the atomic scale, is crucial to their functionality, necessitating analysis at this size level. This thesis explores the use of Atom Probe Tomography (APT) for various biomaterials used in medical devices as well as protein structures. APT is a powerful characterization technique employed in various domains of materials science, providing near-atomic-resolution analysis of the chemical composition of materials in 3D with high sensitivity.
Biomaterials are often used in medical devices for therapeutic purposes. Despite their success, challenges remain, including difficulties in integrating with the body, hard-to-treat bacterial infections, and mechanical failures. Different design strategies for implantable biomaterials were studied to improve integration with bone, antibacterial properties, and mechanical performance. These materials are analysed using correlative electron microscopy and APT to investigate their microstructures and how these affect the desired material properties.
To study proteins using APT, they must be embedded in a matrix that can withstand the conditions required for analysis while retaining the molecules in their native state. Silica synthesized via a sol-gel process is one such material and is studied in this work. Proteins embedded in silica, either directly in solution or after adsorption to a nanostructured surface, allow for specimen preparation for nanoscale analysis from the obtained material. By utilizing new atom probe instrumentation, where atoms are field evaporated by a deep-UV laser, isotope-labelled proteins are unambiguously detected and studied in quantities previously unattained by APT.
Implanted devices
Silica embedding
Biomaterials
Laser Assisted Atom Probe Tomography
Electron microscopy
Nanomaterials
Proteins
Structural Biology
Author
Gustav Eriksson
Chalmers, Chemistry and Chemical Engineering, Applied Chemistry
Atomically Resolved Interfacial Analysis of Bone-Like Hydroxyapatite Nanoparticles on Titanium
Advanced NanoBiomed Research,;Vol. 3(2023)
Journal article
Photothermal Properties of Solid-Supported Gold Nanorods
Nano Letters,;Vol. 24(2024)p. 12529-12535
Journal article
Rau, J., Eriksson, G., Malmberg, P., Reyna, A., Schwiesau, J., Andersson, M., Thuvander, M. Oxidation of a Zirconium Nitride Multilayer Covered Knee Implant after Two Years in Clinical Use
Silica-embedded Gold Nanoparticles Analyzed by Atom Probe Tomography
Microscopy and Microanalysis,;Vol. In Press(2024)
Journal article
Eriksson, G., Hulander, M., Thuvander, M., Andersson, M. Silica Analysis using Deep-UV Laser Assisted Atom Probe Tomography
De Tullio, M., Novi Inverardi, G., Karam, M., Houard, J., Ropitaux, M., Blum, I., Carnovale, F., Lattanzi, G., Taioli, S., Eriksson, G., Hulander, M., Andersson, M., Vella, A., Morresi, T. Evaporation of cations from non-conductive nano-samples using single cycle THz pulses: an experimental and theoretical study
Eriksson, G., Mayweg, D., Hulander, M., Thuvander, M., Andersson, M. Enhanced Throughput and Near Atomically Resolved 3D Protein Structures Analysis using Atom Probe Tomography
Genom historien har materialvetenskapen bidragit till utvecklingen av nya produkter så som implantat som kan opereras in i patienter och ersätta skadade delar i kroppen. I dag används implantat regelbundet inom sjukvården och har hjälpt många människor. Dock kvarstår utmaningar såsom risken för infektioner och misslyckas integration med kroppen.
Genom att studera livets byggstenar, framför allt proteiner, kan vi förstå hur sjukdomar uppstår och hur läkemedel kan utformas för att bota dem. Flera metoder har utvecklats under årens lopp för att studera proteiners struktur. De har varit avgörande för att förstå sjukdomsförlopp och utveckla läkemedel som interagerar med proteiner. Men dagens metoder kan inte undersöka alla viktiga proteiner och flera relevanta frågor återstår för att kunna bota fler sjukdomar.
I den här avhandlingen används avancerade analysmetoder från materialvetenskapen för att studera nya alternativa material för olika sorters implantat samt nya metoder för att studera proteiners struktur. Resultaten kan användas för att designa nya implantat som fungerar bättre och att snabbare kunna utveckla nya läkemedel genom att de tillhandahåller mer information om de proteiner som läkemedlen ska påverka.
Membrane Protein Structure Determination using Atom Probe Tomography
Swedish Research Council (VR) (2020-03568), 2020-12-01 -- 2024-11-30.
4D Microscopy of biological materials by short pulse terahertz sources (MIMOSA)
European Commission (EC) (101046651-MIMOSA), 2022-09-01 -- 2026-08-31.
Subject Categories
Materials Chemistry
Infrastructure
Chalmers Materials Analysis Laboratory
Areas of Advance
Materials Science
ISBN
978-91-8103-125-6
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5583
Publisher
Chalmers
10:an, Kemihuset
Opponent: Daniel Perea, Pacific Northwest National Laboratory, USA