Sharp bounds on the height of K-semistable Fano varieties I, the toric case
Journal article, 2024

Inspired by K. Fujita's algebro-geometric result that complex projective space has maximal degree among all K-semistable complex Fano varieties, we conjecture that the height of a K-semistable metrized arithmetic Fano variety $\mathcal {X}$ of relative dimension $n$ is maximal when $\mathcal {X}$ is the projective space over the integers, endowed with the Fubini-Study metric. Our main result establishes the conjecture for the canonical integral model of a toric Fano variety when $n\leq 6$ (the extension to higher dimensions is conditioned on a conjectural 'gap hypothesis' for the degree). Translated into toric K & auml;hler geometry, this result yields a sharp lower bound on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate our conjecture as an optimal lower bound on Odaka's modular height. In any dimension $n$ it is shown how to control the height of the canonical toric model $\mathcal {X},$ with respect to the K & auml;hler-Einstein metric, by the degree of $\mathcal {X}$. In a sequel to this paper our height conjecture is established for any projective diagonal Fano hypersurface, by exploiting a more general logarithmic setup.

Faltings heights

hler-Einstein metrics

K-stability

Arakelov geometry

Fano varieties

K & auml

Author

Rolf Andreasson

Chalmers, Mathematical Sciences, Algebra and geometry

University of Gothenburg

Robert Berman

University of Gothenburg

Chalmers, Mathematical Sciences, Algebra and geometry

Compositio Mathematica

0010-437X (ISSN) 1570-5846 (eISSN)

Vol. 160 10

Subject Categories

Mathematics

DOI

10.1112/S0010437X2400736X

More information

Latest update

11/13/2024