Hardy spaces and Riesz transforms on a Lie group of exponential growth
Journal article, 2025

Let G be the Lie group R2⋊R+R2⋊R+ endowed with the Riemannian symmetric space structure. Take a distinguished basis X0,X1,X2 of left-invariant vector fields of the Lie algebra of G, and consider the Laplacian Δ=−∑2i=0X2i and the first-order Riesz transforms Ri=XiΔ−1/2, i=0,1,2. We first show that the atomic Hardy space H1 in G introduced by the authors in a previous paper does not admit a characterization in terms of the Riesz transforms RiRi. It is also proved that two of these Riesz transforms are bounded from H1 to H1.

exponential growth

Riesz transforms

Lie groups

Hardy space

Author

Peter Sjögren

University of Gothenburg

Chalmers, Mathematical Sciences

Maria Vallarino

Polytechnic University of Turin

Proceedings of the Royal Society of Edinburgh Section A: Mathematics

0308-2105 (ISSN) 1473-7124 (eISSN)

Vol. In press

Subject Categories (SSIF 2011)

Mathematical Analysis

DOI

10.1017/S0013091524000920

More information

Latest update

3/14/2025