Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output
Journal article, 2024

In recent years, considerable effort has been dedicated to the development of highly efficient thermoelectric generators for waste heat recovery and thermoelectric power generation. In this study, we present employing twisted tapes with variable twist ratio to enhance thermal energy extraction efficiency, coupled with two-stage thermoelectric modules for heat-to-electricity conversion, resulting in a substantial increase in the power output of the thermoelectric generator. We established an experimental system that validated the superior power generation and heat recovery characteristics of the two-stage thermoelectric generator. Building upon these findings, we propose further optimizing the variable twist ratio twisted tapes to enhance the power output. We investigated the impact of tape pitch ratio, twist ratio, and twist ratio variation range on thermoelectric performance. Experimental results indicate that the influence of flow instability is more pronounced than that of swirl intensity, and twist tapes with the maximum twist ratio variation rate yield the highest net output power. Compared to an unmodified thermoelectric generator, the two-stage thermoelectric generator employing twist tapes with a twist ratio increase from π to 3π achieves a maximum net output power gain of up to 100%. These findings provide a practical framework for integrating innovative power generation modules and optimized heat exchanger designs into the application of waste heat recovery thermoelectric generators, marking a significant advancement in the field of thermoelectric generators.

Variable twist ratio

Two-stage thermoelectric generator

Heat transfer enhancement

Twisted tape

Waste heat recovery

Author

Wenlong Yang

Wuhan University of Technology

Chenchen Jin

Wuhan University of Technology

Wenchao Zhu

Wuhan University of Technology

Changjun Xie

Wuhan University of Technology

Liang Huang

Wuhan University of Technology

Yang Li

Chalmers, Electrical Engineering, Systems and control

Binyu Xiong

Wuhan University of Technology

Applied Energy

0306-2619 (ISSN) 18729118 (eISSN)

Vol. 363 123047

Subject Categories (SSIF 2025)

Other Electrical Engineering, Electronic Engineering, Information Engineering

Energy Engineering

DOI

10.1016/j.apenergy.2024.123047

More information

Latest update

5/16/2025