Protein-ligand data at scale to support machine learning
Review article, 2025

Target 2035 is a global initiative that aims to develop a potent and selective pharmacological modulator, such as a chemical probe, for every human protein by 2035. Here, we describe the Target 2035 roadmap to develop computational methods to improve small-molecule hit discovery, which is a key bottleneck in the discovery of chemical probes. Large, publicly available datasets of high-quality protein-small-molecule binding data will be created using affinity-selection mass spectrometry and DNA-encoded chemical library screening. Positive and negative data will be made openly available, and the machine learning community will be challenged to use these data to build models and predict new, diverse small-molecule binders. Iterative cycles of prediction and testing will lead to improved models and more successful predictions. By 2030, Target 2035 will have identified experimentally verified hits for thousands of human proteins and advanced the development of open-access algorithms capable of predicting hits for proteins for which there are not yet any experimental data.

Author

Aled M. Edwards

University of Toronto

Dafydd R. Owen

Pfizer

Leili Zhang

IBM Research

Damian W. Young

Baylor College of Medicine

Timothy M. Willson

The University of North Carolina System

James Wellnitz

The University of North Carolina System

Yanli Wang

National Institutes of Health

Jarrod Walsh

AstraZeneca AB

Erik Vernet

Novo Nordisk

Alexander Tropsha

The University of North Carolina System

Claudia Tredup

Goethe University Frankfurt

Matthew H. Todd

University College London (UCL)

Amelia Tjaden

Goethe University Frankfurt

Sven Thamm

Boehringer Ingelheim

Michael Sundström

Karolinska Institutet

Karolinska University Hospital

Andreas Steffen

Pfizer

Shaun Stauffer

Cleveland Clinic Foundation

Lucas Rodrigo de Souza

State University of Campinas

Min Shen

National Institutes of Health

Kristof T. Schütt

Pfizer

Lovisa Holmberg Schiavone

AstraZeneca AB

Matthieu Schapira

University of Toronto

Santha Santhakumar

University of Toronto

Kumar Saikatendu

Takeda Pharmaceuticals

Emma Rivers

AstraZeneca AB

Dušan Petrović

Nuvisan

Hui Peng

University of Toronto

John P. O’Donnell

Bayer AG

Susanne Müller-Knapp

Goethe University Frankfurt

Anke Mueller-Fahrnow

Nuvisan

Maxwell R. Morgan

University of Toronto

Florian Montel

Boehringer Ingelheim

Juan Carlos Mobarec

AstraZeneca AB

Maurice Michel

Karolinska Institutet

Karolinska University Hospital

Sofia Melliou

University of Toronto

Uta Lessel

Boehringer Ingelheim

Andrew R. Leach

Wellcome Trust

Oliver Krämer

Boehringer Ingelheim

Florian Krieger

Evotec

Stefan Knapp

Goethe University Frankfurt

Anthony D. Keefe

X-Chem

Aimo Kannt

Fraunhofer Society

Scott A. Johnson

Bristol-Myers Squibb

Sandra Häberle

Goethe University Frankfurt

Emily Rose Holzinger

Bristol-Myers Squibb

Ingo V. Hartung

Merck KGaA

Rachel J. Harding

University of Toronto

Thomas Hanke

Goethe University Frankfurt

Levon Halabelian

University of Toronto

Benjamin Haibe-Kains

University of Toronto

Judith Günther

Bayer AG

Marie-Aude Guié

X-Chem

Claudia Gordijo

University of Toronto

Opher Gileadi

Karolinska University Hospital

Karolinska Institutet

Luca Foschini

Sage Bionetworks

Amaury Fernández-Montalván

Boehringer Ingelheim

Ola Engkvist

AstraZeneca AB

University of Gothenburg

Chalmers, Computer Science and Engineering (Chalmers), Data Science and AI

Madison M. Edwards

University of Toronto

Katharina Duerr

OMass Therapeutics

David Drewry

The University of North Carolina System

Dengfeng Dou

HitGen

Snezana Djordjevic

University College London (UCL)

Alejandra Solache Diaz

Abcam plc

Sergio Martinez Cuesta

AstraZeneca AB

Rafael Counago

The University of North Carolina System

Wendy D. Cornel

IBM Research

Jesse A. Coker

Cleveland Clinic Foundation

Djork Arné Clevert

Pfizer

Timothy Cernak

University of Michigan

Nicola A. Burgess-Brown

University College London (UCL)

Peter Brown

The University of North Carolina System

Mario Henrique Bengtson

State University of Campinas

Frances M. Bashore

The University of North Carolina System

Dalia Barsyte-Lovejoy

University of Toronto

Arrash J. Baghaie

X-Chem

Alison D. Axtman

The University of North Carolina System

Cheryl Arrowsmith

University of Toronto

Albert A. Antolin

Hospital Duran i Reynals

Suzanne Ackloo

University of Toronto

NATURE REVIEWS CHEMISTRY

2397-3358 (eISSN)

Vol. In Press

Subject Categories (SSIF 2025)

Bioinformatics (Computational Biology)

Bioinformatics and Computational Biology

Medicinal Chemistry

DOI

10.1038/s41570-025-00737-z

PubMed

40702244

More information

Latest update

8/8/2025 9