Ship resistance when operating in floating ice floes: A combined CFD&DEM approach
Journal article, 2020

© 2020 Elsevier Ltd Whilst climate change is transforming the Arctic into a navigable ocean where small ice floes are floating on the sea surface, the effect of such ice conditions on ship performance has yet to be understood. The present work combines a set of numerical methods to simulate the ship-wave-ice interaction in such ice conditions. Particularly, Computational Fluid Dynamics is applied to provide fluid solutions for the floes and it is incorporated with the Discrete Element Method to govern ice motions and account for ship-ice/ice-ice collisions, by which, the proposed approach innovatively includes ship-generated waves in the interaction. In addition, this work provides two algorithms that can implement computational models with natural ice-floe fields, which takes floe size distribution and randomness into consideration thus achieving high-fidelity modelling of the problem. Following validation against experiments, the model is shown accurate in predicting the ice-floe resistance of a ship, and then a series of simulations are performed to investigate how the resistance is influenced by ship speed, ice concentration, ice thickness and floe diameter. This paper presents a useful approach that can provide power estimates for Arctic shipping and has the potential to facilitate other polar engineering purposes.

Computational fluid dynamics

Arctic shipping

Ship resistance

Discrete element method

Ice floe

Author

Luofeng Huang

University College London (UCL)

Jukka Tuhkuri

Aalto University

Bojan Igrec

University College London (UCL)

Minghao Li

Student at Chalmers

Dimitris Stagonas

Cranfield University

University College London (UCL)

Alessandro Toffoli

University of Melbourne

Philip Cardiff

University College Dublin

Giles Thomas

University College London (UCL)

Marine Structures

0951-8339 (ISSN)

Vol. 74 102817

SEDNA - Safe maritime operations under extreme conditions: the Arctic case

European Commission (EC) (EC/H2020/723526), 2017-06-01 -- 2020-04-30.

Subject Categories (SSIF 2025)

Marine Engineering

Vehicle and Aerospace Engineering

DOI

10.1016/j.marstruc.2020.102817

More information

Latest update

11/18/2025