Closed- and Open-world Reasoning in DL-Lite for Cloud Infrastructure Security
Paper in proceeding, 2021

Infrastructure in the cloud is deployed through configuration files, which specify the resources to be created, their settings, and their connectivity. We aim to model infrastructure before deployment and reason about it so that potential vulnerabilities can be discovered and security best practices enforced. Description logics are a good match for such modeling efforts and allow for a succinct and natural description of cloud infrastructure. Their open-world assumption allows capturing the distributed nature of the cloud, where a newly deployed infrastructure could connect to pre-existing resources not necessarily owned by the same user. However, parts of the infrastructure that are fully known need closed-world reasoning, calling for the usage of expressive formalisms, which increase the computational complexity of reasoning. Here, we suggest an extension of DL-LiteF that is tailored for capturing such cloud infrastructure. Our logic allows combining a core part that is completely defined (closed-world) and interacts with a partially known environment (open-world). We show that this extension preserves the first-order rewritability of DL-LiteF for knowledge-base satisfiability and conjunctive query answering. Security properties combine universal and existential reasoning about infrastructure. Thus, we also consider the problem of conjunctive query satisfiability and show that it can be solved in logarithmic space in data complexity.

Author

Claudia Cauli

University of Gothenburg

Chalmers, Computer Science and Engineering (Chalmers), Formal methods

Magdalena Ortiz

Vienna University of Technology

Nir Piterman

University of Gothenburg

Chalmers, Computer Science and Engineering (Chalmers), Formal methods

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, KR 2021


978-195679299-7 (ISBN)

18th International Conference on Principles of Knowledge Representation and Reasoning, KR 2021
Virtual, Online, ,

Subject Categories (SSIF 2025)

Computer Sciences

DOI

10.24963/kr.2021/17

More information

Latest update

11/27/2025