Thin-Film Electrocatalysts for Polymer Electrolyte Fuel Cells - Activity, Durability and Proton Conduction
Licentiate thesis, 2007

The polymer electrolyte membrane fuel cell (PEMFC) is a potential technology for future energy conversion in sustainable energy systems. By using hydrogen from renewable energy sources and oxygen from the air, the fuel cell produces electricity with water as the only exhaust. However, in order for fuel cells to be compatible with current techniques, several technological improvements are needed. The major issues are related to the platinum used to catalyze the oxygen reduction reaction on the cathode electrode, the proton conducting membrane and the durability of the fuel cell. PEMFC electrodes typically consist of nanometer sized platinum electrocatalyst particles mixed with an ionomer and supported on carbon particles. The structural complexity of the electrode renders fundamental studies of its function difficult. Such studies are needed in order to increase the understanding and performance of the PEMFC electrode. For this purpose, model systems with well defined nanostructures should be used so as to isolate different governing mechanisms. In this thesis, a structurally well controlled thin-film model system has been used to investigate PEMFC electrodes. The model electrodes were fabricated using thermal evaporation of the catalyst material directly on proton conducting membranes or gas diffusion layers. This procedure allows for short fabrication times, control over the amount of material deposited and a wide range of materials can be used. The samples were electrochemically evaluated in a conventional fuel cell under realistic operating conditions. Evaluation of several different thin-film model systems demonstrated that the methodology can be used to qualitative compare and rank catalyst material in the PEMFC environment. Clear changes in the catalytic and structural properties of platinum were observed when the metal was mixed in bi-layers with iridium and titanium oxide. TiO2 was found to operate as a proton conducting electrolyte in the PEMFC. In addition, adding TiO2 between platinum and the carbon gas diffusion layer indicated an increased durability of the PEMFC electrode.


thin film evaporation



titanium oxide


fuel cell

oxygen reduction reaction


proton conduction

model systems

Fasrummet, MC2
Opponent: Dr. Ann Grant, Aftertreatment and Catalysis, Volvo Technology Corporation, Göteborg, Sweden


Björn Wickman

Chalmers, Applied Physics, Chemical Physics

Competence Centre for Catalysis (KCK)

Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell

Electrochimica Acta,; Vol. 52(2007)p. 4239-4245

Journal article

Subject Categories

Physical Sciences


Chalmers University of Technology

Fasrummet, MC2

Opponent: Dr. Ann Grant, Aftertreatment and Catalysis, Volvo Technology Corporation, Göteborg, Sweden

More information

Latest update