Metastable Alumina from Theory: Bulk, Surface, and Growth of κ-Al2O3
                
                        Doctoral thesis, 2001
                
            
                    
                        Aluminas are materials of high technological importance that show a fascinating structural flexibility, with a large amount of different phases (alpha, gamma, eta, delta, kappa, chi, ...) and phase transitions at relatively high temperatures. This variety provides the different alumina phases with a wide range of properties but at the same time makes experimental and theoretical investigations on them difficult to perform. In particular, a fundamental understanding at the atomistic level is lacking for metastable aluminas, for most of which not even the atomic structure is well known. 
In the present Thesis, I report on first-principles theoretical investigations at the quantum-mechanical level, based on the density-functional theory (DFT), to study the stability and bonding of the metastable .kappa.-Al2O3. The motivation for this is three-fold. First, the use of .kappa.-Al2O3 as a wear-resistant coating on cemented-carbide cutting tools, deposited with chemical-vapor deposition (CVD), provides a high technological interest for this material. Second, basic understanding of the stability of a metastable alumina yields general insights into metastable-alumina properties. Third, the study of a relatively complex ionic crystal like .kappa.-Al2O3 can be used to investigate the general problem of ion-crystal stability. 
The work is performed in three parts: (i) The atomic and electronic bulk structures of .kappa.-Al2O3 are determined; (ii) The structure and stability of the (001) and (00-1) surfaces are understood; (iii) The thermodynamics of the Al2O3 nucleation on TiC(111) is investigated. The results yield fundamental knowledge on the CVD growth process of .kappa.-Al2O3, on the stability of metastable aluminas, and on the cohesion of low-symmetry ionic crystals in general. The limited validity of point-charge models for ion-crystal stability is discussed. A surprising prediction of a 1D electron gas at the .kappa.-Al2O3(00-1) surface is furthermore revealed.
                    
                    
                            
                                density-functional theory
                            
                            
                                structure
                            
                            
                                cutting tools
                            
                            
                                plane waves
                            
                            
                                first principles
                            
                            
                                stability
                            
                            
                                one-dimensional electron gas
                            
                            
                                DFT
                            
                            
                                Tasker's rules
                            
                            
                                ionic crystals
                            
                            
                                polar surfaces
                            
                            
                                adsorption
                            
                            
                                pseudopotentials
                            
                            
                                Pauling's rules
                            
                            
                                bonding
                            
                            
                                surface states
                            
                            
                                TiC
                            
                            
                                ceramic materials