Book chapter, 2010

Plagne recently determined the asymptotic behavior of the function E(h), which counts the maximum possible number of essential elements in an additive basis for N of order h. Here we extend his investigations by studying asymptotic behavior of the function E(h,k), which counts the maximum possible number of essential subsets of size k, in a basis of order h. For a fixed k and with h going to infinity, we show that E(h,k) = \Theta_{k} ([h^{k}/\log h]^{1/(k+1)}). The determination of a more precise asymptotic formula is shown to depend on the solution of the well-known "postage stamp problem" in finite cyclic groups. On the other hand, with h fixed and k going to infinity, we show that E(h,k) \sim (h-1) {\log k \over \log \log k}.

University of Gothenburg

Chalmers, Mathematical Sciences, Mathematics

153-171

Other Mathematics

978-0387370293