Molecular all-photonic encoder-decoder
Journal article, 2008

In data processing, an encoder can compress digital information for transmission or storage, whereas a decoder recovers the information in its original form. We report a molecular triad consisting of a dithienylethene covalently linked to two fulgimide photochromes that performs as an all-photonic single-bit 4-to-2 encoder and 2-to-4 decoder. The encoder compresses the information contained in the four inputs into two outputs. The inputs are light of four different wavelengths that photoisomerize the fulgimide, dithienylethene, or both. The outputs are absorbance at two wavelengths. The two decoder inputs are excitation at two wavelengths, whereas the four outputs, which recover the information compressed into the inputs, are absorbance at two wavelengths, transmittance at one wavelength, and fluorescence emission. The molecule can be cycled through numerous encoder and decoder functions without significant photodecomposition. Molecular photonic encoders and decoders could potentially be used for labeling and tracking of nano- and microscale objects as well as for data manipulation.

Author

Joakim Andreasson

Chalmers, Chemical and Biological Engineering, Physical Chemistry

S. D. Straight

T. A. Moore

A. L. Moore

D. Gust

Journal of the American Chemical Society

Vol. 130 33 11122-11128

Subject Categories (SSIF 2011)

Chemical Sciences

More information

Created

10/7/2017