#
Two-point similarity in temporally evolving plane wakes

Journal article, 2007

The governing equations for the two-point correlations of the turbulent fluctuating velocity in the temporally evolving wake were analysed to determine whether they could have equilibrium similarity solutions. It was found that these equations could have such solutions for a finite-Reynolds-number wake, where the two-point velocity correlations could be written as a product of a time-dependent scale and a function dependent only on similarity variables. It is therefore possible to collapse the two-point measures of all the scales of motions in the temporally evolving wake using a single set of similarity variables. As in an earlier single-point analysis, it was found that the governing equations for the equilibrium similarity solutions could not be reduced to a form that was independent of a growth-rate dependent parameter. Thus, there is not a single 'universal' solution that describes the state of the large-scale structures, so that the large-scale structures in the far field may depend on how the flow is generated. The predictions of the similarity analysis were compared to the data from two direct numerical simulations of the temporally evolving wakes examined previously. It was found that the two-point velocity spectra of these temporally evolving wakes collapsed reasonably well over the entire range of scales when they were scaled in the manner deduced from the equilibrium similarity analysis. Thus, actual flows do seem to evolve in a manner consistent with the equilibrium similarity solutions.

LARGE EDDIES

BOUNDARY-LAYER

AXISYMMETRICAL WAKE

SELF-SIMILARITY

PART 1

HIGH-REYNOLDS-NUMBER

FAR WAKE

JET

DOWNSTREAM EVOLUTION

HOMOGENEOUS ISOTROPIC TURBULENCE