Focused ion beam and electron microscopy analysis of corrosion of lead-tin alloys: Applications to conservation of organ pipes
Journal article, 2008

Across Europe, lead-tin alloy organ pipes are suffering from atmospheric corrosion. This deterioration can eventually lead to cracks and holes, preventing the pipes from producing sound. Organ pipes are found in compositions ranging from >99% Pb to >99% Sn. For very lead-rich (>99% Pb) pipes, organic acids emitted from the wood of organ cases have previously been identified as significant corrosive agents. In order to study the role of alloy composition in the susceptibility of pipes to organic acid attack, lead-tin alloys containing 1.2-15 at.% Sn were exposed to acetic acid vapors in laboratory exposure studies. Corrosion rates were monitored gravimetrically, and corrosion product phases were identified using grazing incidence angle X-ray diffraction. In a new method, focused-ion beam (FIB) cross sections were cut through corrosion sites, and SEM and WDX were used to obtain detailed information about the morphology and chemical composition of the corrosion layers. The combination of FIB and SEM has made it possible to obtain depth information about these micron-scale layers, providing insight into the influence of acetic acid on alloys in the 1.2-15 at.% Sn range.

Author

CM Oertel

Oberlin College

SP Baker

Cornell University

Annika Niklasson

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Lars-Gunnar Johansson

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Jan-Erik Svensson

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Materials Research Society Symposium Proceedings

0272-9172 (ISSN)

Vol. 1047 115-125
9781558999886 (ISBN)

Subject Categories

Materials Engineering

Cultural Studies

Chemical Sciences

ISBN

9781558999886

More information

Latest update

4/12/2018