X-ray structures and DFT calculations on rhodium-olefin complexes: Comments on the Rh-103 NMR shift-stability correlation
Journal article, 2000
The low-temperature X-ray structures of bis(eta (2)-ethene)(2,4-pentanedionato)rhodium(I) (1)- and bis(eta (2)-ethene)(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)rhodium(I) (2) were determined. Very similar Rh-ethene coordination geometries are found in the solid state, i.e., 1, Rh-C = 2.127(5) Angstrom, and 2, Rh-C = 2.121(3) Angstrom, in good accord with DFT calculations, i.e., 1, RB-C = 2.132 Angstrom and 2, Rh-C = 2.136 Angstrom. The calculated Rh-103 NMR chemical shifts (GIAO-B3LYP/II level) for a range of bis(eta (2)-alkene)(2,4-pentanedionato)rhodium(I) complexes also agree well with solution NMR data. The empirical correlation between transition-metal shifts and stability constants (Öhrström, L. Comm. Inorg. Chem. 1996, 18, 305) could be confirmed for simple alkenes, since the computed relative Rh-alkene binding energies were found to correlate with delta(Rh-103). I, contrast, chelating or fluorinated alkenes showed large deviations from this correlation. The steric and electronic effects on the Rh-alkene bond are discussed and analyzed in terms of Bader's atoms-in-molecules theory, which revealed qualitatively different binding modes of ethene and tetrafluoroethene to rhodium: ethene forms typical pi -complexes in the Dewar-Chatt-Duncanson model, whereas tetrafluoroethene complexes are on the borderline to metallacyclopropanes.
chemical-shifts
density-functional calculations
compounds
solid-state
molecular-structure
bond
model catalysts
exchange
organometallic
donor ligands
polymerization