The automorphic NS5-brane
Magazine article, 2009

Understanding the implications of SL(2,Z) S-duality for the hypermultiplet moduli space of type II string theories has led to much progress recently in uncovering D-instanton contributions. In this work, we suggest that the extended duality group SL(3,Z), which includes both S-duality and Ehlers symmetry, may determine the contributions of D5 and NS5-branes. We support this claim by automorphizing the perturbative corrections to the "extended universal hypermultiplet", a five-dimensional universal SO(3) SL(3,R) subspace which includes the string coupling, overall volume, Ramond zero-form and six-form and NS axion. Using the non-Abelian Fourier expansion of the Eisenstein series attached to the principal series of SL(3,R), first worked out by Vinogradov and Takhtajan 30 years ago, we extract the contributions of D(-1)-D5 and NS5-brane instantons, corresponding to the Abelian and non-Abelian coefficients, respectively. In particular, the contributions of k NS5-branes can be summarized into a vector of wave functions \Psi_{k,l}, l=0... k-1, as expected on general grounds. We also point out that for more general models with a symmetric moduli space K G, the minimal theta series of G generates an infinite series of exponential corrections of the form required for "small" D(-1)-D1-D3-D5-NS5 instanton bound states. As a mathematical spin-off, we make contact with earlier results in the literature about the spherical vectors for the principal series of SL(3,R) and for minimal representations.

Author

Daniel Persson

Chalmers, Fundamental Physics

Boris Pioline

Preprint: arXiv:0902.3274 [hep-th]

Subject Categories

Subatomic Physics

More information

Latest update

12/13/2018