On the Ergodic Achievable Rates of Spectrum Sharing Networks with Finite Backlogged Primary Users and an Interference Indicator Signal
Journal article, 2012

Spectrum sharing networks are communication setups in which unlicensed secondary users (SUs) are permitted to work within the spectrum resources of licensed primary users (PUs). This paper aims to study the ergodic achievable rates of spectrum sharing networks with finite backlogged primary user and an interference indicator signal. Here, in contrast to the standard interference-avoiding schemes, the secondary user activity is not restricted within the primary user inactive periods. Considering both fading and nonfading channels, the unlicensed user ergodic achievable rate is obtained for different unlicensed user transmission power and licensed user received interference power or signal-to-interference-and-noise (SINR) constraints. In the case of fading channels, the results are obtained for both short-and long-term primary user quality-of-service requirements. Further, the results are generalized to the case of multiple interfering users. In terms of unlicensed user ergodic achievable rate, analytical results indicate that while the standard interference-avoiding approach is the optimal transmission scheme at low secondary user or high primary user transmission powers, higher rates can be achieved via simultaneous transmission at high secondary user SINRs. Moreover, numerical results show that, using an interference indicator signal, there is considerable potential for data transmission of unlicensed users under different licensed users quality-of-service requirements.

interference indicator signal

multiuser systems

ergodic achievable rate

SINR-limited data transmission

power allocation

Spectrum sharing networks

Author

Behrooz Makki

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Thomas Eriksson

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

IEEE Transactions on Wireless Communications

15361276 (ISSN) 15582248 (eISSN)

Vol. 11 9 3079-3089 6247451

Areas of Advance

Information and Communication Technology

Subject Categories

Telecommunications

DOI

10.1109/TWC.2012.071612.110447

More information

Created

10/7/2017