Automated segmentation of free-lying cell nuclei in Pap smears for malignancy-associated change analysis
Paper in proceedings, 2012

This paper presents an automated algorithm for robustly detecting and segmenting free-lying cell nuclei in bright-field microscope images of Pap smears. This is an essential initial step in the development of an automated screening system for cervical cancer based on malignancy associated change (MAC) analysis. The proposed segmentation algorithm makes use of gray-scale annular closings to identify free-lying nuclei-like objects together with marker-based watershed segmentation to accurately delineate the nuclear boundaries. The algorithm also employs artifact rejection based on size, shape, and granularity to ensure only the nuclei of intermediate squamous epithelial cells are retained. An evaluation of the performance of the algorithm relative to expert manual segmentation of 33 fields-of-view from 11 Pap smear slides is also presented. The results show that the sensitivity and specificity of nucleus detection is 94.71% and 85.30% respectively, and that the accuracy of segmentation, measured using the Dice coefficient, of the detected nuclei is 97.30±1.3%.

Microscope images

Pap smear

Manual segmentation

Automated algorithms

Sensitivity and specificity

Change analysis

Watershed segmentation

Dice coefficient

Automated segmentation

Gray scale

Cervical cancers

Automated screening

Cell nucleus

Segmentation algorithms

Epithelial cells

Brightfield

Author

Ramin Moshavegh

Chalmers, Signals and Systems

B. Ehteshami Bejnordi

Chalmers, Signals and Systems

Andrew Mehnert

Chalmers, Signals and Systems, Signalbehandling och medicinsk teknik, Imaging and Image Analysis

K. Sujathan

Regional Cancer Centre India

P. Malm

Uppsala University

E. Bengtsson

Uppsala University

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

1557170X (ISSN)

5372-5375 6347208

Subject Categories

Medical Engineering

DOI

10.1109/EMBC.2012.6347208

ISBN

978-142444119-8

More information

Latest update

2/28/2018