Toroidal modelling of plasma response and RMP field penetration
Journal article, 2012

The penetration dynamics of the resonant magnetic perturbation (RMP) field is sim- ulated in the full toroidal geometry, under realistic plasma conditions in MAST experiments. The physics associated with several aspects of the RMP penetration - the plasma response and rotational screening, the resonant and non-resonant torques and the toroidal momentum balance - are highlighted. In particular, the plasma response is found to significantly amplify the non-resonant component of the RMP field for some of the MAST plasmas. A fast rotating plasma, in response to static external magnetic fields, experiences a more distributed electro- magnetic torque due to the resonance with continuum waves in the plasma. At fast plasma flow (such as for the MAST plasma), the electromagnetic torque is normally dominant over the neoclassical toroidal viscous (NTV) torque. However, at sufficiently slow plasma flow, the NTV torque can play a significant role in the toroidal momentum balance, thanks to the precession drift resonance enhanced, so called superbanana plateau regime.

Author

Yueqiang Liu

Chalmers, Earth and Space Sciences, Transport Theory

A Kirk

Y Sun

P Cahyna

I.T Chapman

P Denner

G Fishpool

A.M. Garofalo

J.R. Harrison

E. Nardon

Plasma Physics and Controlled Fusion

0741-3335 (ISSN) 1361-6587 (eISSN)

Vol. 54 12 124013-

Areas of Advance

Energy

Subject Categories

Fusion, Plasma and Space Physics

DOI

10.1088/0741-3335/54/12/124013

More information

Created

10/7/2017