Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
Journal article, 2013

Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. Pulsed addition of 3.9?g?L-1 HMF and 1.2?g?L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1?hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1?hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and nitrogen assimilation were induced 1?hour after pulsing. The redox and energy metabolism were found to be more severely affected after pulsing of furan aldehydes during the xylose consumption phase than during glucose consumption. Conceivably, this discrepancy resulted from the low xylose utilization rate, hence suggesting that xylose metabolism is a feasible target for metabolic engineering of more robust xylose-utilizing yeast strains.

Author

Magnus Ask

Chalmers, Chemical and Biological Engineering, Industrial biotechnology

Maurizio Bettiga

Chalmers, Chemical and Biological Engineering, Industrial biotechnology

Varuni Raju Duraiswamy

Chalmers, Chemical and Biological Engineering, Industrial biotechnology

Lisbeth Olsson

Chalmers, Chemical and Biological Engineering, Industrial biotechnology

Biotechnology for Biofuels

17546834 (ISSN) 1754-6834 (eISSN)

Vol. 6 181 181

Subject Categories

Chemical Sciences

DOI

10.1186/1754-6834-6-181

More information

Created

10/8/2017