InP DHBT Amplifier Modules Operating Between 150 and 300 GHz Using Membrane Technology
Journal article, 2015

In this paper, we present WR05 (140-220 GHz) and WR03 (220-325 GHz) five-stage amplifier modules with novel membrane microstrip-to-waveguide transitions. The modules use a 250-nm InP double heterojunction bipolar transistor (DHBT) technology and multilayer thin-film microstrip transmission lines. The waveguide transitions use E-plane probes on 3- μm-thin GaAs membrane substrate. Beam lead connectors integrated on the transition eliminate the need of highly reactive bond wires. In addition, process steps such as backside metallization, backside vias, and nonrectangular dicing of the integrated circuits (ICs) are not required. The WR05 amplifier module demonstrates a peak gain of 24 dB at 245 GHz and more than 10-dB gain from 155 to 270 GHz. The WR-03 module has 19-dB gain from 230 to 254 GHz with input and output return loss better than 10 dB from 225 to 330 GHz. The two modules were also characterized in terms of noise. The minimum noise figures were measured to 9.7 dB at 195 GHz and 10.8 dB at 240 GHz for the WR05 and WR03 modules, respectively. To the authors' best knowledge, these are the first published results on an InP DHBT amplifier modules operating at these high frequencies. It is also the first time that membrane technology is used for IC packaging, regardless of IC technology.

Author

Klas Eriksson

Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics

Sten Gunnarsson

Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics

Johanna Hanning

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

Herbert Zirath

Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics

IEEE Transactions on Microwave Theory and Techniques

0018-9480 (ISSN) 15579670 (eISSN)

Vol. 63 2 433-440 7001672

Areas of Advance

Nanoscience and Nanotechnology

Infrastructure

Nanofabrication Laboratory

Subject Categories (SSIF 2011)

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/TMTT.2014.2384493

More information

Latest update

4/5/2022 6