Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA
Journal article, 2015

© 2015 Springer International Publishing Switzerland Hypoxia hampers eutrophication reduction efforts by enabling high nutrient fluxes from sediment to bottom waters. Oxygenation of hypoxic water bodies is often proposed to reduce benthic ammonium and phosphate release. This study investigates the functional response of benthic nitrate-reducing processes to a long-term engineered oxygenation effort in a density-stratified fjord with euxinic bottom waters. Oxygenation was achieved by mixing surface water with deep, euxinic water, which increased oxygen and nitrate concentrations in the deep water column. The presence of nitrate instigated benthic nitrate reduction in the newly oxidized sediments by equally stimulating denitrification and dissimilatory nitrate reduction to ammonium (DNRA). DNRA and total nitrate reduction rates, as well as the contribution of DNRA to total nitrate reduction, decreased with increasing exposure time of the sediments to oxygen. The relative importance of DNRA as a nitrate sink was correlated to nitrate concentrations, with more nitrate being reduced to ammonium at higher bottom water nitrate concentrations. Overall, engineered oxygenation decreased the net efflux of dissolved inorganic nitrogen from the sediments by stimulating net nitrate removal through denitrification.

Engineered oxygenation

Anammox

DNRA

Denitrification

Hypoxia

Dissimilatory nitrate reduction

By Fjord

Author

L. De Brabandere

Vrije Universiteit Brussel (VUB)

University of Southern Denmark

S. Bonaglia

Stockholm University

Mikhail Kononets

University of Gothenburg

Lena Viktorsson

University of Gothenburg

Anders Stigebrandt

University of Gothenburg

B. Thamdrup

University of Southern Denmark

Per Hall

University of Gothenburg

Biogeochemistry

0168-2563 (ISSN) 1573-515X (eISSN)

Vol. 126 1 131-152

Subject Categories

Earth and Related Environmental Sciences

Chemical Sciences

DOI

10.1007/s10533-015-0148-6

More information

Latest update

2/1/2022 1