Assessing the potential of multi-seasonal WorldView-2 imagery for mapping West African agroforestry tree species
Journal article, 2016

High resolution satellite systems enable efficient and detailed mapping of tree cover, with high potential to support both natural resource monitoring and ecological research. This study investigates the capability of multi-seasonal WorldView-2 imagery to map five dominant tree species at the individual tree crown level in a parkland landscape in central Burkina Faso. The Random Forest algorithm is used for object based tree species classification and for assessing the relative importance of WorldView-2 predictors. The classification accuracies from using wet season, dry season and multi-seasonal datasets are compared to gain insights about the optimal timing for image acquisition. The multi-seasonal dataset produced the most accurate classifications, with an overall accuracy (OA) of 83.4%. For classifications based on single date imagery, the dry season (OA = 78.4%) proved to be more suitable than the wet season (OA = 68.1%). The predictors that contributed most to the classification success were based on the red edge band and visible wavelengths, in particular green and yellow. It was therefore concluded that WorldView- 2, with its unique band configuration, represents a suitable data source for tree species mapping in West African parklands. These results are particularly promising when considering the recently launched WorldView-3, which provides data both at higher spatial and spectral resolution, including shortwave infrared bands.

Tree species mapping






Martin Karlson

Madelene Ostwald

University of Gothenburg

Chalmers, Energy and Environment, Physical Resource Theory

Heather Reese

Hugues Roméo Bazie

Baolidioa Tankoano

International Journal of Applied Earth Observation and Geoinformation

1569-8432 (ISSN)

Vol. 50 August 80-88

Subject Categories

Environmental Sciences related to Agriculture and Land-use

Forest Science

Physical Geography



More information