Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles
Journal article, 2016

The fate of adsorbed lipid vesicles on solid supports depends on numerous experimental parameters and typically results in the formation of a supported lipid bilayer (SLB) or an adsorbed vesicle layer. One of the poorly understood questions relates to how divalent cations appear to promote SLB formation in some cases. The complexity arises from the multiple ways in which divalent cations affect vesicle substrate and vesicle vesicle interactions as well as vesicle properties. These interactions are reflected, e.g., in the degree of deformation of adsorbed vesicles (if they do not rupture). It is, however, experimentally challenging to measure the extent of vesicle deformation in real-time. Herein, we investigated the effect of divalent cations (Mg2+, Ca2+, Sr2+) on the adsorption of zwitterionic 1,2-dioleoylsn-glycero-3-phosphocholine (DOPC) lipid vesicles onto silicon oxide- and titanium oxide coated substrates. The vesicle adsorption process was tracked using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurement techniques. On silicon oxide, vesicle adsorption led to SLB formation in all cases, while vesicles adsorbed but did not rupture on titanium oxide. It was identified that divalent cations promote increased deformation of adsorbed vesicles on both substrates and enhanced rupture on silicon oxide in the order Ca2+ > Mg2+ > Sr2+. The influence of divalent cations on different factors in these systems is discussed, clarifying experimental observations on both substrates. Taken together, the findings in this work offer insight into how divalent cations modulate the interfacial science of supported membrane systems.

surface-plasmon resonance

atomic-force microscopy



Materials Science





supported phospholipid-bilayers



quartz-crystal microbalance


M. Dacic

Nanyang Technological University

J. Jackman

Nanyang Technological University

S. Yorulmaz

Nanyang Technological University

V. P. Zhdanov

Nanyang Technological University

Russian Academy of Sciences

Bengt Herbert Kasemo

Chalmers, Physics, Chemical Physics

N. J. Cho

Nanyang Technological University


07437463 (ISSN) 15205827 (eISSN)

Vol. 32 25 6486-6495

Subject Categories

Materials Engineering

Other Physics Topics





More information

Latest update

4/6/2022 1