Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design
Journal article, 2016

Solution-processed oxo-functionalized graphene (oxo-G1) is employed to substitute hydrophilic PEDOT:PSS as an anode interfacial layer for perovskite solar cells. The resulting devices exhibit a reasonably high power conversion efficiency (PCE) of 15.2% in the planar inverted architecture with oxo-G1 as a hole transporting material (HTM), and most importantly, deploy the full open-circuit voltage (Voc) of up to 1.1 V. Moreover, oxo-G1 effectively slows down the ingress of water vapor into the device stack resulting in significantly enhanced environmental stability of unpackaged cells under illumination with 80% of the initial PCE being reached after 500 h. Without encapsulation, ∼60% of the initial PCE is retained after ∼1000 h of light soaking under 0.5 sun and ambient conditions maintaining the temperature beneath 30 °C. Moreover, the unsealed perovskite device retains 92% of its initial PCE after about 1900 h under ambient conditions and in the dark. Our results underpin that controlling water diffusion into perovskite cells through advanced interface engineering is a crucial step towards prolonged environmental stability.

Author

Haiwei Chen

University of Erlangen-Nuremberg (FAU)

Yi Hou

University of Erlangen-Nuremberg (FAU)

C. E. Halbig

University of Erlangen-Nuremberg (FAU)

Shi Chen

University of Erlangen-Nuremberg (FAU)

Hong Zhang

University of Erlangen-Nuremberg (FAU)

Ning Li

University of Erlangen-Nuremberg (FAU)

Fei Guo

University of Erlangen-Nuremberg (FAU)

Xiaofeng Tang

University of Erlangen-Nuremberg (FAU)

Nicola Gasparini

University of Erlangen-Nuremberg (FAU)

Ievgen Levchuk

University of Erlangen-Nuremberg (FAU)

Simon Kahmann

University of Erlangen-Nuremberg (FAU)

University of Groningen

Cesar Omar Ramirez Quiroz

University of Erlangen-Nuremberg (FAU)

Andres Osvet

University of Erlangen-Nuremberg (FAU)

Siegfried Eigler

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Christoph J. Brabec

University of Erlangen-Nuremberg (FAU)

Das Bayerische Zentrum fur Angewandte Energieforschung e.V.

Journal of Materials Chemistry A

20507488 (ISSN) 20507496 (eISSN)

Vol. 4 30 11604-11610

Subject Categories

Chemical Sciences

DOI

10.1039/c6ta03755k

More information

Latest update

3/29/2018