Dynamics of 3D isolated thermal filaments
Journal article, 2016

Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

temperature perturbations

filament motion

devices

edge turbulence

convective-transport

boundary

plasma edge

scrape-off-layer

blobs

thermal effects

Physics

Author

N. R. Walkden

Culham Science Centre

Luke Easy

University of York

Culham Science Centre

F. Militello

Culham Science Centre

John Omotani

Chalmers, Physics, Subatomic and Plasma Physics

Plasma Physics and Controlled Fusion

0741-3335 (ISSN) 1361-6587 (eISSN)

Vol. 58 11 115010

Driving Forces

Sustainable development

Areas of Advance

Energy

Roots

Basic sciences

Subject Categories (SSIF 2011)

Fusion, Plasma and Space Physics

DOI

10.1088/0741-3335/58/11/115010

More information

Latest update

11/22/2021