The dispersion of nearest-neighbor decoding for additive non-Gaussian channels
Paper in proceedings, 2017

We study the second-order asymptotics of information transmission using random Gaussian codebooks and nearest neighbor decoding over a power-limited stationary memoryless additive non-Gaussian noise channel. We show that the dispersion term depends on the non-Gaussian noise only through its second and fourth moments, thus complementing the capacity result (Lapidoth, 1996), which depends only on the second moment. Furthermore, we characterize the second-order asymptotics of point-to-point codes over K -sender interference networks with non-Gaussian additive noise. Specifically, we assume that each user's codebook is Gaussian and that NN decoding is employed, i.e., that interference from the K-1 unintended users (Gaussian interfering signals) is treated as noise at each decoder. We show that while the first-order term in the asymptotic expansion of the maximum number of messages depends on the power of the interfering codewords only through their sum, this does not hold for the second-order term.

non-Gaussian channels


interference networks

second-order asymptotics

nearest-neighbor decoding


Jonathan Scarlett

Ecole Polytechnique Federale De Lausanne

Vincent Y. F. Tan

National University of Singapore (NUS)

Giuseppe Durisi

Chalmers, Signals and Systems, Kommunikationssystem, informationsteori och antenner, Communication Systems

IEEE Transactions on Information Theory

0018-9448 (ISSN)

Vol. 63 1 81-92

Driving Forces

Sustainable development

Subject Categories

Communication Systems



More information

Latest update

5/3/2018 1