Convexity of the extended K-energy and the large time behavior of the weak Calabi flow
Journal article, 2017

Let (X, omega) be a compact connected Kahler manifold and denote by (epsilon(p), d(p)) the metric completion of the space of Kahler potentials H-omega with respect to the L-p - type path length metric d(p). First, we show that the natural analytic extension of the (twisted) Mabuchi K-energy to epsilon(p) is a d(p)-lsc functional that is convex along finite-energy geodesics. Second, following the program of J Streets, we use this to study the asymptotics of the weak (twisted) Calabi flow inside the CAT(0) metric space (epsilon(2), d(2)). This flow exists for all times and coincides with the usual smooth (twisted) Calabi flow whenever the latter exists. We show that the weak (twisted) Calabi flow either diverges with respect to the d(2)-metric or it d(1)-converges to some minimizer of the K-energy inside epsilon(2). This gives the first concrete result about the long-time convergence of this flow on general Kahler manifolds, partially confirming a conjecture of Donaldson. We investigate the possibility of constructing destabilizing geodesic rays asymptotic to diverging weak (twisted) Calabi trajectories, and give a result in the case when the twisting form is Kahler. Finally, when a cscK metric exists in H-omega, our results imply that the weak Calabi flow d(1)-converges to such a metric.

Author

Robert Berman

University of Gothenburg

Chalmers, Mathematical Sciences, Algebra and geometry

T. Darvas

University of Maryland

Hoang Chinh Lu

Chalmers, Mathematical Sciences

University of Gothenburg

Geometry and Topology

1465-3060 (ISSN)

Vol. 21 5 2945-2988

Subject Categories

Mathematics

DOI

10.2140/gt.2017.21.2945

More information

Created

10/10/2017