Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling
Journal article, 2018

© 2018, © 2018 The Authors. Published with license by Taylor & Francis Group, LLC. Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows.

code optimization and parallelization

High-performance computer

infrastructure for integrated modeling

Author

I. Voitsekhovitch

Culham Lab

R. Hatzky

Max Planck Society

D. Coster

Max Planck Society

F. Imbeaux

The French Alternative Energies and Atomic Energy Commission (CEA)

D. C. McDonald

EUROfusion Programme Management Unit

Culham Lab

Tamás Fehér

Max Planck Society

K. S. Kang

Max Planck Society

H. Leggate

Dublin City University

M. Martone

Max Planck Society

S. Mochalskyy

Max Planck Society

X. Sáez

Centro Nacional de Supercomputacion

T. Ribeiro

Max Planck Society

T. M. Tran

Swiss Plasma Centre

A. Gutierrez-Milla

Centro Nacional de Supercomputacion

T. Aniel

The French Alternative Energies and Atomic Energy Commission (CEA)

D. Figat

Poznanskie Centrum Superkomputerowo Sieciowe

L. Fleury

The French Alternative Energies and Atomic Energy Commission (CEA)

Olivier Hoenen

Max Planck Society

J. Hollocombe

Culham Lab

D. Kaljun

University of Ljubljana

G. Manduchi

Consorzio Rfx

M. Owsiak

Poznanskie Centrum Superkomputerowo Sieciowe

V. Pais

National Institute for Laser, Plasma and Radiation Physics

B. Palak

Poznanskie Centrum Superkomputerowo Sieciowe

M. Plociennik

Poznanskie Centrum Superkomputerowo Sieciowe

J. Signoret

The French Alternative Energies and Atomic Energy Commission (CEA)

C. Vouland

The French Alternative Energies and Atomic Energy Commission (CEA)

Dimitriy Yadykin

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics, Plasma Physics and Fusion Energy

F. Robin

The French Alternative Energies and Atomic Energy Commission (CEA)

F. Iannone

ENEA Centro Ricerche Frascati

G. Bracco

ENEA Centro Ricerche Frascati

J. David

The French Alternative Energies and Atomic Energy Commission (CEA)

A. Maslennikov

CINECA

J. Noé

The French Alternative Energies and Atomic Energy Commission (CEA)

E. Rossi

CINECA

R. Kamendje

Technische Universität Graz

EUROfusion Programme Management Unit

S. Heuraux

University of Lorraine

M. Hölzl

Max Planck Society

S. D. Pinches

ITER

F. Da Silva

Instituto Superior Tecnico

D. Tskhakaya

Vienna University of Technology

Fusion Science and Technology

1536-1055 (ISSN)

Vol. 74 3 186-197

Subject Categories

Embedded Systems

Computer Science

Computer Systems

DOI

10.1080/15361055.2018.1424483

More information

Latest update

10/3/2018