2D-Stack: A scalable lock-free stack design that continuously relaxes semantics for better performance
Report, 2018

In this report, we propose an efficient lock-free concurrent stack design with tunable and tenable relaxed semantics to allow for better performance. The design is materialized by a shared memory distributed stack design that allow for a continuous monotonic trade of weaker semantics for better throughput performance. Concurrent stacks have an inherent scalability bottleneck due to their single access point for both push and pop operations.

Elimination and semantics relaxation have been proposed in the literature to address this problem. Semantic relaxation has the potential and flexibility to reach monotonically very high throughput. Previous solutions could not fully leverage this potential. We propose a new two-dimensional design that can achieve this by exploiting disjoint access parallelism in one dimension and locality in the other. This is achieved through distributing the stack in form of sub-stacks that are accessed independently in parallel. Load balancing is used to keep a balanced number of operations on individual sub-stacks.

We also provide tight relaxation bounds for the behaviour of our algorithm. We compare experimentally to previous work, with respect to throughput and relaxed behaviour observed, on di fferent relaxation and concurrency settings. The results show that our algorithm signi cantly outperform all other algorithms in terms of performance, while maintaining better quality in contrast to other designs with relaxed semantics.

Weak Consistence

Data Structures

Distributed Algorithms

Technical Report

Lock-free

Stack

Relaxed Semantics

Concurrency

Author

Adones Rukundo

Chalmers, Computer Science and Engineering (Chalmers)

Aras Atalar

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Philippas Tsigas

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Subject Categories (SSIF 2011)

Computer Engineering

Communication Systems

Computer Science

Areas of Advance

Information and Communication Technology

Driving Forces

Sustainable development

Innovation and entrepreneurship

Technical report - Department of Computer Science and Engineering, Chalmers University of Technology and Göteborg University: 2018:06

Publisher

Chalmers

More information

Latest update

3/10/2023