Synthesis of Nanoparticles and Organometallic Complexes for Gas Sensing
Doctoral thesis, 2020

Currently metal nanoparticles (NPs) are a subject of interest regarding many applications, in particular chemical gas sensing, as the associated environmental issues are of substantial importance. Metal NPs are attractive due to their fascinating optical properties and primarily, localized surface plasmon resonance (LSPR) which strongly depends on size and shape of NPs. Desired size and shape of NPs can be achieved by colloidal synthesis that allows for flexibility in the reaction conditions, although it demands high precision and understanding of how different factors affect NP formation, which can influence the quality of synthesized NPs. Regarding chemical sensing, phthalocyanines possess strong activity towards some gases, and they carry interesting optical properties, therefore their application is also interesting.

This thesis focuses extensively on the synthesis and characterization of Pd NPs for hydrogen sensing. The Pd NPs synthesis was optimized with regard to the concentration needed for efficient response from the sensor. The Pd NPs were incorporated into a polymer matrix to be protected from poisoning, which also led the diffusion path between hydrogen and Pd NPs to be extended. Different stabilizing agents for Pd NPs were examined in order to explore how common stabilizing compounds and their interactions with Pd NPs may influence the sensing process. The work was focused on the use of homogeneous surfactant and polymer coatings on Pd nanofabricated surfaces, which were examined and analyzed in hydrogen sensing. Additionally, to address hydrogen sensing problems i.e. hysteresis, PdAu alloys with various Pd:Au ratios were colloidally synthesized and thoroughly characterized. PdAu alloys exhibited excellent results of hysteresis removal at specific Pd:Au ratios. Moreover, phthalocyanine based complexes; Zn, Co, Cu, Fe, were synthesized for application in NOx monitoring.

nanocube

LSPR

alloys

colloidal synthesis

organic synthesis

phthalocyanine complexes

gas sensing.

stabilizers

palladium

nanoparticles

phthalocyanine

nanocomposites

gold

online, for the password please contact me at stolas@chalmers.se
Opponent: Professor Bo Wegge Laursen, Department of Chemistry, University of Copenhagen, Denmark

Author

Alicja Stolas

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Robust Colloidal Synthesis of Palladium-Gold Alloy Nanoparticles for Hydrogen Sensing

ACS Applied Materials & Interfaces,; Vol. 13(2021)p. 45758-45767

Journal article

Alicja Stolaś, Irem Tanyeli, Walter Rosas Arbelaez, David Tomecek, Christoph Langhammer, Kasper Moth-Poulsen. " Synthesis of phthalocyanine complexes with gold nanoparticles attachments for NOx sensing"

Aktualny stan środowiska wymaga odpowiedniej oraz nieustannej kontroli zanieczyszczeń, ponieważ mają one bardzo szkodliwy wpływ na zdrowie człowieka. Równie ważne jest wprowadzanie działań i procesów, które w konsekwencji nie będą wytwarzać niezdrowych produktów ubocznych. Przykład efektywnego wykorzystania tych rozwiązań stanowi zastępowanie samochodów spalinowych, pojazdami napędzanymi wodorem, czego następstwem jest brak emisji zanieczyszczeń. Zarówno przy kontroli zanieczyszczeń środowiskowych, jak i przy użyciu wodoru jako paliwa, konieczne jest zastosowanie sensorów, które monitorują poziomy toksycznych gazów czy też informują o wszelakich nieścisłościach. W ostatnich latach szczególnym zainteresowaniem cieszą się nanocząsteczki poszczególnych metali oraz związki organiczne, które wykazjują aktywność w stosunku do gazów takich jak tlenki azotu lub wodór. Przedmiotem tej rozprawy doktorskiej jest synteza nanocząsteczek, palladu, złota oraz ich stopów. Ponadto, dana praca prezentuje dogłębną analizę interakcji zachodzących pomiędzy nanocząsteczkami, a związkami potrzebnymi do ich stabilizacji. Ukazuje także, jaki wpływ na proces monitorowania wodoru wywierają te interakcje. Pozostała część tej rozprawy skupia się na syntezie związków metaloorganicznych, które mogłyby zostać wykorzystane do kontroli poziomu zanieczyszczeń tlenkami azotu.

 

The current environmental situation requires proper pollution control, since pollution has a very harmful effect on our health. It is equally important to implement activities and processes that will not produce unhealthy by-products as a result. An example of the effective use of these solutions is the replacement of internal combustion cars with hydrogen-powered cars, which results in no emissions. Both when controlling environmental pollution and when using hydrogen as a fuel, it is necessary to use sensors that monitor the levels of toxic gases or inform the user of any leakage. In recent years, nanoparticles of individual metals and organic compounds, which show activity against gases such as nitrogen oxides or hydrogen, have been of particular interest. The subject of this doctoral dissertation is the synthesis of palladium and gold nanoparticles and their alloys. In addition, this work presents an in-depth analysis of the interactions between nanoparticles and the compounds needed to stabilize them, and shows how these interactions affect the hydrogen monitoring process. The remainder of this dissertation focuses on the synthesis of organometallic compounds that could be used to control the level of nitrogen oxide pollution.

Rambidrag inom utlysningen "Materials Science 2015"

Swedish Foundation for Strategic Research (SSF) (RMA15-0052), 2016-05-01 -- 2021-06-30.

Driving Forces

Sustainable development

Areas of Advance

Nanoscience and Nanotechnology

Materials Science

Roots

Basic sciences

Subject Categories

Chemical Engineering

Materials Chemistry

Nano Technology

Chemical Sciences

Organic Chemistry

Composite Science and Engineering

Infrastructure

Chalmers Materials Analysis Laboratory

ISBN

978-91-7905-405-2

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4872

Publisher

Chalmers

online, for the password please contact me at stolas@chalmers.se

Online

Opponent: Professor Bo Wegge Laursen, Department of Chemistry, University of Copenhagen, Denmark

More information

Latest update

11/12/2023