Fabrication: Mechanical testing and structural simulation of regenerated cellulose fabric elium® thermoplastic composite system
Journal article, 2021

Regenerated cellulose fibres are an important part of the forest industry, and they can be used in the form of fabrics as reinforcement materials. Similar to the natural fibres (NFs), such as flax, hemp and jute, that are widely used in the automotive industry, these fibres possess good potential to be used for semi-structural applications. In this work, the mechanical properties of regenerated cellulose fabric-reinforced poly methyl methacrylate (PMMA) (Elium®) composite were investigated and compared with those of its natural fibre composite counterparts. The developed composite demonstrated higher tensile strength and ductility, as well as comparable flexural properties with those of NF-reinforced epoxy and Elium® composite systems, whereas the Young’s modulus was lower. The glass transition temperature demonstrated a value competitive (107.7 °C) with that of other NF composites. Then, the behavior of the bio-composite under bending and loading was simulated, and a materials model was used to simulate the behavior of a car door panel in a flexural scenario. Modelling can contribute to predicting the structural behavior of the bio-based thermoplastic composite for secondary applications, which is the aim of this work. Finite element simulations were performed to assess the deflection and force transfer mechanism for the car door interior.

Mechanical performance

Finite element (FE)

Regenerated cellulose fibre

Thermoplastic resin

Author

Pooria Khalili

University of Borås

Mikael Skrifvars

University of Borås

Ahmet Semih Ertürk

Chalmers, Industrial and Materials Science, Material and Computational Mechanics

Polymers

2073-4360 (eISSN)

Vol. 13 17 2969

Subject Categories

Applied Mechanics

Paper, Pulp and Fiber Technology

Composite Science and Engineering

DOI

10.3390/polym13172969

More information

Latest update

9/13/2021