Designing Reflective Derived Metrics for Fitness Trackers
Journal article, 2023

Personal tracking devices are equipped with more and more sensors and offer an ever-increasing level of accuracy. Yet, this comes at the cost of increased complexity. To deal with that problem, fitness trackers use derived metrics - -scores calculated based on sensor data, e.g. a stress score. This means that part of the agency in interpreting health data is transferred from the user to the tracker. In this paper, we investigate the consequences of that transition and study how derived metrics can be designed to offer an optimal personal informatics experience. We conducted an online survey and a series of interviews which examined a health score (a hypothetical derived metric) at three levels of abstraction. We found that the medium abstraction level led to the highest level of reflection. Further, we determined that presenting the metric without contextual information led to decreased transparency and meaning. Our work contributes guidelines for designing effective derived metrics.

derived metrics

fitness trackers

personal informatics




Marit Bentvelzen

Utrecht University

Jasmin Niess

University of St Gallen

Paweł W. Woźniak

Chalmers, Computer Science and Engineering (Chalmers), Interaction Design and Software Engineering

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies

24749567 (eISSN)

Vol. 6 4 158

Subject Categories

Computer and Information Science



More information

Latest update