First results from the CRESST-III low-mass dark matter program
Journal article, 2019

The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an Earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this paper we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon (heat) signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at similar to 15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c(2).

Author

A. H. Abdelhameed

Max Planck Society

G. Angloher

Max Planck Society

P. Bauer

Max Planck Society

A. Bento

Universidade de Coimbra

Max Planck Society

E. Bertoldo

Max Planck Society

C. Bucci

National Institute for Nuclear Physics

L. Canonica

Max Planck Society

A. D'Addabbo

National Institute for Nuclear Physics

Gran Sasso Science Institute (GSSI)

X. Defay

Technical University of Munich

S. Di Lorenzo

Gran Sasso Science Institute (GSSI)

National Institute for Nuclear Physics

A. Erb

Walther-Meissner-Institute for Low Temperature Research

Technical University of Munich

F. v Feilitzsch

Technical University of Munich

S. Fichtinger

Austrian Academy of Sciences

N. Ferreiro Iachellini

Max Planck Society

A. Fuss

Austrian Academy of Sciences

Vienna University of Technology

P. Gorla

National Institute for Nuclear Physics

D. Hauff

Max Planck Society

J. Jochum

University of Tübingen

A. Kinast

Technical University of Munich

H. Kluck

Austrian Academy of Sciences

Vienna University of Technology

H. Kraus

University of Oxford

A. Langenkaemper

Technical University of Munich

M. Mancuso

Max Planck Society

V Mokina

Austrian Academy of Sciences

E. Mondragon

Technical University of Munich

A. Muenster

Technical University of Munich

M. Olmi

Gran Sasso Science Institute (GSSI)

National Institute for Nuclear Physics

T. Ortmann

Technical University of Munich

C. Pagliarone

Universita di Cassino e del Lazio Meridionale

National Institute for Nuclear Physics

L. Pattavina

Technical University of Munich

Gran Sasso Science Institute (GSSI)

F. Petricca

Max Planck Society

W. Potzel

Technical University of Munich

F. Proebst

Max Planck Society

F. Reindl

Vienna University of Technology

Austrian Academy of Sciences

J. Rothe

Max Planck Society

K. Schaffner

Gran Sasso Science Institute (GSSI)

National Institute for Nuclear Physics

J. Schieck

Austrian Academy of Sciences

Vienna University of Technology

V Schipperges

University of Tübingen

D. Schmiedmayer

Vienna University of Technology

Austrian Academy of Sciences

S. Schoenert

Technical University of Munich

C. Schwertner

Austrian Academy of Sciences

Vienna University of Technology

M. Stahlberg

Austrian Academy of Sciences

Vienna University of Technology

L. Stodolsky

Max Planck Society

C. Strandhagen

University of Tübingen

R. Strauss

Technical University of Munich

C. Tuerkoglu

Vienna University of Technology

Austrian Academy of Sciences

I Usherov

University of Tübingen

M. Willers

Technical University of Munich

Vanessa Zema

Chalmers, Physics, Subatomic and Plasma Physics

Physical Review D

2470-0010 (ISSN) 2470-0029 (eISSN)

Vol. 100 10 102002

Subject Categories

Accelerator Physics and Instrumentation

Subatomic Physics

Atom and Molecular Physics and Optics

DOI

10.1103/PhysRevD.100.102002

More information

Latest update

11/3/2020