A multiscale approach towards mesostructured porous material design (MULTIMAT)
Research Project, 2016
– 2020
MULTIMAT addresses (1) the industrial and societal need for affordable materials that have a highly defined and large porosity together with the required (mechanical, chemical and/or thermal) robustness for application in thermal insulation, catalysts, fuel cells and oil spill remediation and (2) the scientific need to better understand the mechanisms underlying the assembly of small building blocks into larger structures that are ordered hierarchally across multiple scales ("multiscale assembly"). Together this will contribute to achieving MULTIMAT's future aim: Understanding and ultimately steering the bottom-up construction of materials with complex hierarchical structures.
MULTIMAT will train a next generation of scientists (13 ESRs) able to master this complex design-and-assembly process.
The MULTIMAT research activities include 1) the design and synthesis of building blocks with tailor made shapes and sizes, 2) their (co)-assembly into ordered structures with predefined mesoscale organisation, 3) the in-situ analysis of the development of morphology of structure during these processes, 4) the simulation of the structure formation from the molecular to the mesoscale level and the prediction of related physical properties, 5) the evaluation and testing of the properties and performance in selected technological applications.
MULTIMAT brings together leading scientists from all relevant disciplines, and a large number of industrial partners, multinationals as well as SMEs. This strong involvement of industry clearly demonstrates the need for researchers educated in steering colloidal self-organisation. Direct outcomes of the project will include novel building blocks, (super-)porous materials with outstanding properties and novel tools for in situ imaging and molecular modelling.
Participants
Anders Palmqvist (contact)
Applied Surface Chemistry
Collaborations
Akzo Nobel - Pulp and Performance Chemicals
Göteborg, Sweden
Eindhoven University of Technology
Eindhoven, Netherlands
Leibniz Institute for New Materials
Saarbrücken, Germany
Separex SAS
Champignuelles, France
Stockholm University
Stockholm, Sweden
University of Manchester
Manchester, United Kingdom
Utrecht University
Utrecht, Netherlands
Funding
European Commission (EC)
Project ID: EC/H2020/676045
Funding Chalmers participation during 2016–2020
Related Areas of Advance and Infrastructure
Sustainable development
Driving Forces
Nanoscience and Nanotechnology
Areas of Advance
Materials Science
Areas of Advance