A multiscale approach towards mesostructured porous material design (MULTIMAT)
Forskningsprojekt, 2016
– 2020
MULTIMAT addresses (1) the industrial and societal need for affordable materials that have a highly defined and large porosity together with the required (mechanical, chemical and/or thermal) robustness for application in thermal insulation, catalysts, fuel cells and oil spill remediation and (2) the scientific need to better understand the mechanisms underlying the assembly of small building blocks into larger structures that are ordered hierarchally across multiple scales ("multiscale assembly"). Together this will contribute to achieving MULTIMAT's future aim: Understanding and ultimately steering the bottom-up construction of materials with complex hierarchical structures.
MULTIMAT will train a next generation of scientists (13 ESRs) able to master this complex design-and-assembly process.
The MULTIMAT research activities include 1) the design and synthesis of building blocks with tailor made shapes and sizes, 2) their (co)-assembly into ordered structures with predefined mesoscale organisation, 3) the in-situ analysis of the development of morphology of structure during these processes, 4) the simulation of the structure formation from the molecular to the mesoscale level and the prediction of related physical properties, 5) the evaluation and testing of the properties and performance in selected technological applications.
MULTIMAT brings together leading scientists from all relevant disciplines, and a large number of industrial partners, multinationals as well as SMEs. This strong involvement of industry clearly demonstrates the need for researchers educated in steering colloidal self-organisation. Direct outcomes of the project will include novel building blocks, (super-)porous materials with outstanding properties and novel tools for in situ imaging and molecular modelling.
Deltagare
Anders Palmqvist (kontakt)
Teknisk ytkemi
Samarbetspartners
Akzo Nobel - Pulp and Performance Chemicals
Göteborg, Sweden
Leibniz-Institut für neue Materialien Gemeinnützige GMBH
Saarbrücken, Germany
Separex SAS
Champignuelles, France
Stockholms universitet
Stockholm, Sweden
Technische Universiteit Eindhoven
Eindhoven, Netherlands
Universiteit Utrecht
Utrecht, Netherlands
University of Manchester
Manchester, United Kingdom
Finansiering
Europeiska kommissionen (EU)
Projekt-id: EC/H2020/676045
Finansierar Chalmers deltagande under 2016–2020
Relaterade styrkeområden och infrastruktur
Hållbar utveckling
Drivkrafter
Nanovetenskap och nanoteknik
Styrkeområden
Materialvetenskap
Styrkeområden