Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials' properties
Artikel i vetenskaplig tidskrift, 2020

In this work, we identify and characterize a new intriguing capability of carboxylated cellulose nanofibrils that could be exploited to design smart nanomaterials with tuned response properties for specific applications. Cellulose nanofibrils undergo a multivalent counter-ion induced re-entrant behavior at a specific multivalent metal salt concentration. This effect is manifested as an abrupt increase in the strength of the hydrogel that returns upon a further increment of salt concentration. We systematically study this phenomenon using dynamic light scattering, small-angle X-ray scattering, and molecular dynamics simulations based on a reactive force field. We find that the transitions in the nanofibril microstructure are mainly because of the perturbing actions of multivalent metal ions that induce conformational changes of the nanocellulosic chains and thus new packing arrangements. These new aggregation states also cause changes in the thermal and mechanical properties as well as wettability of the resulting films, upon water evaporation. Our results provide guidelines for the fabrication of cellulose-based films with variable properties by the simple addition of multivalent ions.


Luis Valencia

Stockholms universitet

Alfa Laval Nordic AB

Emma M. Nomena

Universiteit Van Amsterdam


Susanna Monti

Consiglio Nazionale delle Ricerche (CNR)

Walter Rosas Arbelaez

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Teknisk ytkemi

Aji P. Mathew

Stockholms universitet

Sugam Kumar

Bhabha Atomic Research Centre

Stockholms universitet

Krassimir P. Velikov


Universiteit Utrecht

Universiteit Van Amsterdam


2040-3364 (ISSN)

Vol. 12 29 15652-15662

A multiscale approach towards mesostructured porous material design (MULTIMAT)

Europeiska kommissionen (EU), 2016-03-01 -- 2020-02-22.



Fysikalisk kemi

Annan kemi





Mer information

Senast uppdaterat