Experimental micromechanics in three dimensions
Research Project, 2019 – 2021

Mechanical testing on the microstructural length scale (micromechanical testing) is critical both for fundamental understanding of deformation and fracture phenomena, and for development, calibration and verification of models for integrated multiscale simulations. The proposed project is aimed at developing a versatile micromechanical testing platform for in-situ use in scanning electron microscopes, based on a micromanipulator with unconstrained movement in three dimensions. This will allow testing in arbitrary directions, compared to the single-axis linear-only movement of traditional solutions, and thus provide unparalleled flexibility in terms of testing methods. A finite element model capable of simulating the piezo-resistive force measurement sensor will be developed to correctly interpret the output signals when the sensor is subjected to loads from arbitrary directions, and approximate analytical models for real-time data analysis will be derived. Using the proposed platform, methods, strategies and documented protocols for both specimen preparation and testing will be developed, covering a number of different representative cases including load path changes in bending, tensile loading and testing of embedded and surface adherent features. The unique flexibility of the proposed set-up, in combination with low cost and low threshold for implementation, will make it widely accessible for both industry and academia.

Participants

Anand Harihara Subramonia Iyer (contact)

Materials Microstructure

Magnus Hörnqvist Colliander

Materials Microstructure

Funding

Swedish Foundation for Strategic Research (SSF)

Project ID: ITM17-0003
Funding Chalmers participation during 2019–2021

Related Areas of Advance and Infrastructure

Chalmers Materials Analysis Laboratory

Infrastructure

Materials Science

Areas of Advance

Publications

More information

Latest update

9/26/2019