Convergence to the coalescent in populations of substantially varying size.
Journal article, 2004

Kingman's classical coalescent uncovers the basic pattern of genealogical trees of random samples of individuals in large but time-constant populations. Time is viewed as discrete and identified with non-overlapping generations. Reproduction can be very generally taken as exchangeable (meaning that the labelling of individuals in each generation carries no significance). Recent generalisations have dealt with population sizes exhibiting given deterministic or (minor) random fluctuations. We consider population sizes which constitute a stationary Markov chain, explicitly allowing large fluctuations in short times. Convergence of the genealogical tree, as population size tends to infinity, towards the (time-scaled) coalescent is simply proved under minimal conditions. As a result, a formula for effective population size obtains, generalising the well-knownharmonic mean expression for effective size.



population genetics


Peter Jagers

University of Gothenburg

Chalmers, Department of Mathematical Statistics

Serik Sagitov

University of Gothenburg

Chalmers, Department of Mathematical Statistics

Journal of Applied Probability

0021-9002 (ISSN)

Vol. 41 2 368-378

Subject Categories

Probability Theory and Statistics


More information