Fluid mixing in growing microscale vesicles conjugated by surfactant nanotubes
Journal article, 2005

This work addresses novel means for controlled mixing and reaction initiation in biomimetic confined compartments having volume elements in the range of 10-12 to 10-15 L. The method is based on mixing fluids using a two-site injection scheme into growing surfactant vesicles. A solid-state injection needle is inserted into a micrometer-sized vesicle (radius 5-25 μm), and by pulling on the needle, we create a nanoscale surfactant channel connecting injection needle and the vesicle. Injection of a solvent A from the needle into the nanotube results in the formation of a growing daughter vesicle at the tip of the needle in which mixing takes place. The growth of the daughter vesicle requires a flow of surfactants in the nanotube that generates a flow of solvent B inside the nanotube which is counterdirectional to the pressure-injected solvent. The volume ratio ψ between solvent A and B inside the mixing vesicle was analyzed and found to depend only on geometrical quantities. The majority of fluid injected to the growing daughter vesicle comes from the pressure-based injection, and for a micrometer-sized vesicle it dominates. For the formation of one daughter vesicle (conjugated with a 100-nm radius tube) expanded from 1 to 200 μm in radius, the mixing ratios cover almost 3 orders of magnitude. We show that the system can be expanded to linear strings of nanotube-conjugated vesicles that display exponential dilution. Mixing ratios spanning 6 orders of magnitude were obtained in strings of three nanotube-conjugated micrometer-sized daughter vesicles.


M. Davidson


P. Dommersnes

Physico-Chimie Curie

Martin Markström

Chalmers, Chemical and Biological Engineering

J. F. Joanny

Physico-Chimie Curie

Mattias Karlsson


Owe Orwar

Chalmers, Chemical and Biological Engineering, Physical Chemistry

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 127 4 1251-1257

Subject Categories

Chemical Engineering



More information

Latest update