Design, Fabrication, and Characterization of Novel Vertical Coaxial Transitions for Flip-Chip Interconnects
Journal article, 2009

In this paper, a novel transition design using vertical "coaxial transition" for coplanar waveguide (CPW-to-CPW) flip-chip interconnect is proposed and presented for the first time. The signal continuity is greatly improved since the coaxial-type transition provides more return current paths compared to the conventional transition in the flip-chip structure. The proposed coaxial transition structure shows a real coaxial property from the 3-D electromagnetic wave simulation results. The design rules for the coaxial transition are presented in detail with the key parameters of the coaxial transition structure discussed. For demonstration, the back-to-back flip-chip interconnect structures with the vertical coaxial transitions have been successfully fabricated and characterized. The demonstrated interconnect structure using the coaxial transition exhibits the return loss below 25 dB and the insertion loss within 0.4 dB from dc to 40 GHz. Furthermore, the measurement and simulation results show good agreement. The novel coaxial transition demonstrates excellent interconnect performance for flip-chip interconnects and shows great potential for flip-chip packaging applications at millimeter waves.

coplanar waveguide (CPW)

flip-chip

interconnect

transition

Coaxial

Author

W. C. Wu

National Chiao Tung University

Chalmers

E. Y. Chang

National Chiao Tung University

R. B. Hwang

National Chiao Tung University

L. H. Hsu

National Chiao Tung University

C. H. Huang

National Chiao Tung University

Camilla Kärnfelt

Chalmers

Herbert Zirath

Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics

IEEE Transactions on Advanced Packaging

1521-3323 (ISSN)

Vol. 32 2 362-371

Subject Categories

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/TADVP.2009.2014997

More information

Latest update

9/10/2018