Fundamental Limits of Wideband Localization— Part II: Cooperative Networks
Journal article, 2010

The availability of position information is of great importance in many commercial, governmental, and military applications. Localization is commonly accomplished through the use of radio communication between mobile devices (agents) and fixed infrastructure (anchors). However, precise determination of agent positions is a challenging task, especially in harsh environments due to radio blockage or limited anchor deployment. In these situations, cooperation among agents can significantly improve localization accuracy and reduce localization outage probabilities. A general framework of analyzing the fundamental limits of wideband localization has been developed in Part I of the paper. Here, we build on this framework and establish the fundamental limits of wideband cooperative location-aware networks. Our analysis is based on the waveforms received at the nodes, in conjunction with Fisher information inequality. We provide a geometrical interpretation of equivalent Fisher information (EFI) for cooperative networks. This approach allows us to succinctly derive fundamental performance limits and their scaling behaviors, and to treat anchors and agents in a unified way from the perspective of localization accuracy. Our results yield important insights into how and when cooperation is beneficial.

Author

Yuan Shen

Massachusetts Institute of Technology (MIT)

Henk Wymeersch

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Moe Win

Massachusetts Institute of Technology (MIT)

IEEE Transactions on Information Theory

0018-9448 (ISSN) 1557-9654 (eISSN)

Vol. 56 10 4981 - 5000 5571889

Areas of Advance

Information and Communication Technology

Subject Categories

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/TIT.2010.2059720

More information

Latest update

4/11/2018