Performance of the load-in-the-loop single Op-Amp voltage Controlled current source from the Op-Amp Parameters
Paper in proceeding, 2010

In recent years, Electrical Bioimpedance (EBI) methods have gained importance. These methods are often based on obtaining impedance spectrum in the range of β-dispersion, i.e. from a few kHz up to some MHz. To measure EBI a constant current is often injected and the voltage across the tissue under study is recorded. Due to the performance of the current source influences the performance of the entire system, in terms of frequency range, several designs have been implemented and studied. In this paper the basic structure of a Voltage-Controlled Current Source based on a single Op-Amp in inverter configuration with a floating load, known as load-in-the-loop current source, is revisited and studied deeply. We focus on the dependence of the output impedance with the circuit parameters, i.e. the feedback resistor and the inverter-input resistor, and the Op-Amp main parameters, i.e. open loop gain, CMRR and input impedance. After obtaining the experimental results, using modern Op-Amps, and comparing to the theoretical and simulated ones, they confirm the design under study can be a good solution for multi-frequency wideband EBI applications because of higher values of the output impedance than 100kΩ at 1MHz are obtained. Furthermore, an enhancement of the basic design, using a current conveyor as a first stage, is proposed, studied and implemented.

Current Source

spectroscopy

EBIS

Author

Raul Macias

Fernando Seoane Martinez

Chalmers, Signals and Systems, Signal Processing and Biomedical Engineering

Ramon bragos

Journal of Physics: Conference Serie

1742-6596 (ISSN)

Vol. 224 1 12008-

Areas of Advance

Information and Communication Technology

Subject Categories (SSIF 2011)

Other Engineering and Technologies not elsewhere specified

Control Engineering

More information

Created

10/6/2017