Substance Flow Analysis of Novel Compounds: The Case of Graphene
Conference poster, 2011
Many new nanomaterials are being developed, and it provides a great challenge to estimate emissions of nanomaterials to the environment. One such nanomaterial is graphene, which has been hailed for its many potential useful applications. In accordance, researchers studying graphene received the 2010 Nobel Prize in physics. The current emissions of graphene are low due to the limited production, but may become significant in the future considering the rapid increase in graphene production. The method of substance flow analysis (SFA) has previously been used for estimating emissions of chemicals in an accounting manner. However, when using SFA in a prospective way for assessing emissions of a novel substance such as graphene, three prime challenges emerge: (1) estimating future magnitudes of flows and stocks of applications in which graphene is a constituent, (2) estimating concentration of graphene in the applications and (3) estimating emission coefficients specific for graphene and the application. Even if future flows and stocks of applications containing graphene cannot be rigorously estimated, potential risk can be probed by investigations of stylized states that account for different levels of technology diffusion. Concentration data is sometimes available since it is an important technical performance parameter, for instance for graphene in various composites. In more complex applications such as electronics, it may be more difficult to obtain. No emission coefficients of graphene are available, which constitutes that perhaps largest gap in an SFA of graphene. The conclusions drawn for the case of graphene is probably of interest for assessments of emissions of other novel substances as well.