Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiatve heat transfer with the weighted-sum-of-grey-gases model
Journal article, 2011
This work focuses on models suitable for taking into account the spectral properties of combustion gases
in computationally demanding applications, such as computational fluid dynamics. One such model,
which is often applied in combustion modelling, is the weighted-sum-of-grey-gases (WSGG) model.
The standard formulation of this model uses parameters fitted to a wide range of temperatures, but only
for specific ratios of H2O to CO2. Then, the model is limited to gases from fuels with a given composition
of hydrogen and carbon, unless several sets of fitted parameters are used. Here, the WSGG model is modified
to account for various ratios of H2O to CO2 concentrations. The range of molar ratios covers both oxyfuel
combustion of coal, with dry- or wet flue gas recycling, as well as combustion of natural gas. The nongrey
formulation of the modified WSGG model is tested by comparing predictions of the radiative source
term and wall fluxes in a gaseous domain between two infinite plates with predictions by a statistical
narrow-band model. Two grey approximations are also included in the comparison, since such models
are frequently used for calculation of gas radiation in comprehensive combustion computations. It is
shown that the modified WSGG model significantly improves the estimation of the radiative source term
compared to the grey models, while the accuracy of wall fluxes is similar to that of the grey models or
better.
Modelling
Gas radiation
Combustion
Spectral properties