Trajectory Extension Methods for Model Predictive Direct Torque Control
Paper in proceeding, 2011

This paper focuses on model predictive direct torque control (MPDTC), which is a recent control scheme for threephase ac electric drives combining the notions of model predictive control (MPC) and direct torque control (DTC). Using a dynamic model of the drive, MPDTC predicts several future switch transitions, extends the outputs and chooses the inverter switch positions that minimize the switching frequency or the switching losses. The performance of MPDTC depends on the accuracy of the predictions. However, MPTDC schemes with very accurate predictions are computationally demanding necessitating very fast controller hardware. New methods for extending the output trajectories are proposed that yield fast yet accurate predictions giving rise to a computationally efficient MPDTC scheme. The advantages of the proposed methods are shown in terms of the associated computational complexity and the accuracy of the predictions.

Author

Yashar Zeinaly

Chalmers, Signals and Systems, Systems and control

Tobias Geyer

Bo Egardt

Chalmers, Signals and Systems, Systems and control

Proc. Applied Power Electronics Conference and Exposition

Areas of Advance

Information and Communication Technology

Energy

Subject Categories

Control Engineering

More information

Created

10/7/2017