STRUCTURE-ACTIVITY STUDIES OF THE BINDING OF MODIFIED PEPTIDE NUCLEIC-ACIDS (PNAS) TO DNA
Journal article, 1994

Peptide nucleic acid (PNA) oligomers where one of the repeating backbone units is extended with a methylene group to either N-(2-aminoethyl)-beta-alanine or N-(3-aminopropyl)glycine were prepared. Alternatively, the linker to the nucleobase was extended from methylenecarbonyl to ethylenecarbonyl. The thermal stability of the hybrids between these PNA oligomers and complementary DNA oligonucleotides was significantly lower than that of the corresponding complexes involving unmodified PNA. However, the sequence selectivity was retained. Thymidyl decamers with all N-(2-aminoethyl)-beta-alanine or N-(3-aminopropyl)glycine backbones were prepared and shown to be unable to hybridize to the complementary (dA)(10) oligonucleotides, whereas a PNA decamer containing only ethylenecarbonyl linkers between the nucleobases and the N-(2-aminoethyl)glycine backbone showed weak but sequence-specific affinity for complementary DNA. All hybrids involving homopyrimidine PNA oligomers exhibited (PNA)(2)/DNA stoichiometry, whereas mixed-sequence PNA oligomers formed PNA/DNA duplexes. The preferred binding direction between the modified PNA and DNA in the duplex motifs was antiparallel, as previously reported for complexes involving unmodified PNA.

recognition

guanine

adenine

hybrids

polyamide

cytosine

oligonucleotides

thymine

Author

B. Hyrup

M. Egholm

P. E. Nielsen

Pernilla Wittung

Department of Physical Chemistry

Bengt Nordén

Department of Physical Chemistry

O. Buchardt

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 116 18 7964-7970

Subject Categories

Chemical Sciences

DOI

10.1021/ja00097a002

More information

Latest update

10/15/2018