Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers
Journal article, 2012

Melt spinning of conductive polymer composites (CPCs) is coupled with some difficulties such as a decrease of conductivity upon drawing and a reduced spinnability with increasing filler concentration. Applying bicomponent technology may provide the possibility to produce fibers from CPCs with a high filler concentration. A pilot-scale bicomponent melt spinning set-up was used to produce core/sheath fibers with fiber titers between 13 and 47 dtex. The sheath material was polyamide 6 (PA6) or polypropylene (PP) and the core material was a CPC. Two CPCs were used, polypropylene (PP) with carbon black (CB), denoted by PP/CB, and polyethylene (PE) with multiwalled carbon nanotubes (MWNT), denoted by PE/MWNT. The results showed that both materials could be used with a filler concentration of 10 wt % to obtain melt draw ratios up to 195. The volumetric fraction of core material in the bicomponent structure was 28%. A heat treatment of PP/CB fibers restored the conductivity to the level of the undrawn material, corresponding to an increase in conductivity by a factor 5. The same heat treatment had a positive effect on the conductivity of PE/MWNT fibers although the conductivity was not restored.

percolation

conductivity

melt spinning

carbon black

multiwalled carbon nanotubes

fibers

Author

Martin Strååt

Chalmers, Materials and Manufacturing Technology, Polymeric Materials and Composites

Mikael Rigdahl

Chalmers, Materials and Manufacturing Technology, Polymeric Materials and Composites

Bengt Hagström

Chalmers, Materials and Manufacturing Technology, Polymeric Materials and Composites

Journal of Applied Polymer Science

0021-8995 (ISSN) 1097-4628 (eISSN)

Vol. 123 2 936-943

Subject Categories

Materials Engineering

Driving Forces

Innovation and entrepreneurship

Areas of Advance

Materials Science

DOI

10.1002/app.34539

More information

Created

10/7/2017