Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers
Artikel i vetenskaplig tidskrift, 2012

Melt spinning of conductive polymer composites (CPCs) is coupled with some difficulties such as a decrease of conductivity upon drawing and a reduced spinnability with increasing filler concentration. Applying bicomponent technology may provide the possibility to produce fibers from CPCs with a high filler concentration. A pilot-scale bicomponent melt spinning set-up was used to produce core/sheath fibers with fiber titers between 13 and 47 dtex. The sheath material was polyamide 6 (PA6) or polypropylene (PP) and the core material was a CPC. Two CPCs were used, polypropylene (PP) with carbon black (CB), denoted by PP/CB, and polyethylene (PE) with multiwalled carbon nanotubes (MWNT), denoted by PE/MWNT. The results showed that both materials could be used with a filler concentration of 10 wt % to obtain melt draw ratios up to 195. The volumetric fraction of core material in the bicomponent structure was 28%. A heat treatment of PP/CB fibers restored the conductivity to the level of the undrawn material, corresponding to an increase in conductivity by a factor 5. The same heat treatment had a positive effect on the conductivity of PE/MWNT fibers although the conductivity was not restored.

percolation

conductivity

melt spinning

carbon black

multiwalled carbon nanotubes

fibers

Författare

Martin Strååt

Chalmers, Material- och tillverkningsteknik, Polymera material och kompositer

Mikael Rigdahl

Chalmers, Material- och tillverkningsteknik, Polymera material och kompositer

Bengt Hagström

Chalmers, Material- och tillverkningsteknik, Polymera material och kompositer

Journal of Applied Polymer Science

0021-8995 (ISSN) 1097-4628 (eISSN)

Vol. 123 936-943

Ämneskategorier

Materialteknik

Drivkrafter

Innovation och entreprenörskap

Styrkeområden

Materialvetenskap

DOI

10.1002/app.34539